Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 21 of 21

Full-Text Articles in Life Sciences

An Expanded View Of The Eukaryotic Cytoskeleton, James B. Moseley Oct 2013

An Expanded View Of The Eukaryotic Cytoskeleton, James B. Moseley

Dartmouth Scholarship

A rich and ongoing history of cell biology research has defined the major polymer systems of the eukaryotic cytoskeleton. Recent studies have identified additional proteins that form filamentous structures in cells and can self-assemble into linear polymers when purified. This suggests that the eukaryotic cytoskeleton is an even more complex system than previously considered. In this essay, I examine the case for an expanded definition of the eukaryotic cytoskeleton and present a series of challenges for future work in this area.


Inhibition Of The Host Translation Shutoff Response By Herpes Simplex Virus 1 Triggers Nuclear Envelope-Derived Autophagy, Kerstin Radtke, Luc English, Christiane Rondeau, David Leib Jan 2013

Inhibition Of The Host Translation Shutoff Response By Herpes Simplex Virus 1 Triggers Nuclear Envelope-Derived Autophagy, Kerstin Radtke, Luc English, Christiane Rondeau, David Leib

Dartmouth Scholarship

Macroautophagy is a cellular pathway that degrades intracellular pathogens and contributes to antigen presentation. Herpes simplex virus 1 (HSV-1) infection triggers both macroautophagy and an additional form of autophagy that uses the nuclear envelope as a source of membrane. The present study constitutes the first in-depth analysis of nuclear envelope-derived autophagy (NEDA). We established LC3a as a marker that allowed us to distinguish between NEDA and macroautophagy in both immunofluorescence and flow cytometry. NEDA was observed in many different cell types, indicating that it is a general response to HSV-1 infection. This autophagic pathway is known to depend on the …


Septin Phosphorylation And Coiled-Coil Domains Function In Cell And Septin Ring Morphology In The Filamentous Fungus Ashbya Gossypii, Rebecca A. Meseroll, Patricia Occhipinti, Amy S. Gladfelter Nov 2012

Septin Phosphorylation And Coiled-Coil Domains Function In Cell And Septin Ring Morphology In The Filamentous Fungus Ashbya Gossypii, Rebecca A. Meseroll, Patricia Occhipinti, Amy S. Gladfelter

Dartmouth Scholarship

Septins are a class of GTP-binding proteins conserved throughout many eukaryotes. Individual septin subunits associate with one another and assemble into heteromeric complexes that form filaments and higher-order structures in vivo. The mechanisms underlying the assembly and maintenance of higher-order structures in cells remain poorly understood. Septins in several organisms have been shown to be phosphorylated, although precisely how septin phosphorylation may be contributing to the formation of high-order septin structures is unknown. Four of the five septins expressed in the filamentous fungus, Ashbya gossypii, are phosphorylated, and we demonstrate here the diverse roles of these phosphorylation sites …


Heterogeneity In Mitochondrial Morphology And Membrane Potential Is Independent Of The Nuclear Division Cycle In Multinucleate Fungal Cells, John P. Gerstenberger, Patricia Occhipinti, Amy S. Gladfelter Jan 2012

Heterogeneity In Mitochondrial Morphology And Membrane Potential Is Independent Of The Nuclear Division Cycle In Multinucleate Fungal Cells, John P. Gerstenberger, Patricia Occhipinti, Amy S. Gladfelter

Dartmouth Scholarship

In the multinucleate filamentous fungus Ashbya gossypii, nuclei divide asynchronously in a common cytoplasm. We hypothesize that the division cycle machinery has a limited zone of influence in the cytoplasm to promote nuclear autonomy. Mitochondria in cultured mammalian cells undergo cell cycle-specific changes in morphology and membrane potential and therefore can serve as a reporter of the cell cycle state of the cytoplasm. To evaluate if the cell cycle state of nuclei in A. gossypii can influ


Role Of Flgt In Anchoring The Flagellum Of Vibrio Cholerae, Raquel M. Martinez, Brooke A. Jude, Thomas J. Kirn, Karen Skorupski, Ronald K. Taylor Apr 2010

Role Of Flgt In Anchoring The Flagellum Of Vibrio Cholerae, Raquel M. Martinez, Brooke A. Jude, Thomas J. Kirn, Karen Skorupski, Ronald K. Taylor

Dartmouth Scholarship

Flagellar motility has long been regarded as an important virulence factor. In Vibrio cholerae, the single polar flagellum is essential for motility as well as for proper attachment and colonization. In this study, we demonstrate that the novel flagellar protein FlgT is involved in anchoring the flagellum to the V. cholerae cell. A screen for novel colonization factors by use of TnphoA mutagenesis identified flgT. An in-frame deletion of flgT established that FlgT is required for attachment, colonization, and motility. Transmission electron microscopy revealed that while the flgT mutant is capable of assembling a phenotypically normal flagellum, …


Ceramide Kinase Regulates Phospholipase C And Phosphatidylinositol 4, 5, Bisphosphate In Phototransduction, Ujjaini Dasgupta, Takeshi Bamba, Salvatore Chiantia, Pusha Karim, Ahmad N. Abou Tayoun Nov 2009

Ceramide Kinase Regulates Phospholipase C And Phosphatidylinositol 4, 5, Bisphosphate In Phototransduction, Ujjaini Dasgupta, Takeshi Bamba, Salvatore Chiantia, Pusha Karim, Ahmad N. Abou Tayoun

Dartmouth Scholarship

Phosphoinositide-specific phospholipase C (PLC) is a central effector for many biological responses regulated by G-protein-coupled receptors including Drosophila phototransduction where light sensitive channels are activated downstream of NORPA, a PLCbeta homolog. Here we show that the sphingolipid biosynthetic enzyme, ceramide kinase, is a novel regulator of PLC signaling and photoreceptor homeostasis. A mutation in ceramide kinase specifically leads to proteolysis of NORPA, consequent loss of PLC activity, and failure in light signal transduction. The mutant photoreceptors also undergo activity-dependent degeneration. Furthermore, we show that a significant increase in ceramide, resulting from lack of ceramide kinase, perturbs the membrane microenvironment of …


The Yeast Integral Membrane Protein Apq12 Potentially Links Membrane Dynamics To Assembly Of Nuclear Pore Complexes, John J. Scarcelli, Christin A. Hodge, Charles N. Cole Aug 2007

The Yeast Integral Membrane Protein Apq12 Potentially Links Membrane Dynamics To Assembly Of Nuclear Pore Complexes, John J. Scarcelli, Christin A. Hodge, Charles N. Cole

Dartmouth Scholarship

Although the structure and function of components of the nuclear pore complex (NPC) have been the focus of many studies, relatively little is known about NPC biogenesis. In this study, we report that Apq12 is required for efficient NPC biogenesis in Saccharomyces cerevisiae. Apq12 is an integral membrane protein of the nuclear envelope (NE) and endoplasmic reticulum. Cells lacking Apq12 are cold sensitive for growth, and a subset of their nucleoporins (Nups), those that are primarily components of the cytoplasmic fibrils of the NPC, mislocalize to the cytoplasm. APQ12 deletion also causes defects in NE morphology. In the absence of …


A Serratia Marcescens Oxyr Homolog Mediates Surface Attachment And Biofilm Formation, Robert M. Q. Shanks, Nicholas A. Stella, Eric J. Kalivoda, Megan R. Doe Aug 2007

A Serratia Marcescens Oxyr Homolog Mediates Surface Attachment And Biofilm Formation, Robert M. Q. Shanks, Nicholas A. Stella, Eric J. Kalivoda, Megan R. Doe

Dartmouth Scholarship

OxyR is a conserved bacterial transcription factor with a regulatory role in oxidative stress response. From a genetic screen for genes that modulate biofilm formation in the opportunistic pathogen Serratia marcescens, mutations in an oxyR homolog and predicted fimbria structural genes were identified. S. marcescens oxyR mutants were severely impaired in biofilm formation, in contrast to the hyperbiofilm phenotype exhibited by oxyR mutants of Escherichia coli and Burkholderia pseudomallei. Further analysis revealed that OxyR plays a role in the primary attachment of cells to a surface. Similar to what is observed in other bacterial species, S. marcescens OxyR …


Regulation Of Meiotic Cohesion And Chromosome Core Morphogenesis During Pachytene In Drosophila Oocytes, Radhika S. Khetani, Sharon E. Bickel Jul 2007

Regulation Of Meiotic Cohesion And Chromosome Core Morphogenesis During Pachytene In Drosophila Oocytes, Radhika S. Khetani, Sharon E. Bickel

Dartmouth Scholarship

During meiosis, cohesion between sister chromatids is required for normal levels of homologous recombination, maintenance of chiasmata and accurate chromosome segregation during both divisions. In Drosophila, null mutations in the ord gene abolish meiotic cohesion, although how ORD protein promotes cohesion has remained elusive. We show that SMC subunits of the cohesin complex colocalize with ORD at centromeres of ovarian germ-line cells. In addition, cohesin SMCs and ORD are visible along the length of meiotic chromosomes during pachytene and remain associated with chromosome cores following DNase I digestion. In flies lacking ORD activity, cohesin SMCs fail to accumulate at oocyte …


Inverse Regulation Of Biofilm Formation And Swarming Motility By Pseudomonas Aeruginosa Pa14, Nicky C. Caiazza, Judith H. Merritt, Kimberly M. Brothers, George A. O'Toole Mar 2007

Inverse Regulation Of Biofilm Formation And Swarming Motility By Pseudomonas Aeruginosa Pa14, Nicky C. Caiazza, Judith H. Merritt, Kimberly M. Brothers, George A. O'Toole

Dartmouth Scholarship

We previously reported that SadB, a protein of unknown function, is required for an early step in biofilm formation by the opportunistic pathogen Pseudomonas aeruginosa. Here we report that a mutation in sadB also results in increased swarming compared to the wild-type strain. Our data are consistent with a model in which SadB inversely regulates biofilm formation and swarming motility via its ability both to modulate flagellar reversals in a viscosity-dependent fashion and to influence the production of the Pel exopolysaccharide. We also show that SadB is required to properly modulate flagellar reversal rates via chemotaxis cluster IV (CheIV cluster). …


An Essential Role For Endocytosis Of Rhodopsin Through Interaction Of Visual Arrestin With The Ap-2 Adaptor, Nicholas R. Orem, Luxi Xia, Patrick J. Dolph May 2006

An Essential Role For Endocytosis Of Rhodopsin Through Interaction Of Visual Arrestin With The Ap-2 Adaptor, Nicholas R. Orem, Luxi Xia, Patrick J. Dolph

Dartmouth Scholarship

Previously, we have identified a class of retinal degeneration mutants in Drosophila in which the normally transient interaction between arrestin2 (Arr2) and rhodopsin is stabilized and the complexes are rapidly internalized into the cell body by receptor-mediated endocytosis. The accumulation of protein complexes in the cytoplasm eventually results in photoreceptor cell death. We now show that the endocytic adapter protein AP-2 is essential for rhodopsin endocytosis through an Arr2-AP-2beta interaction, and mutations in Arr2 that disrupt its interaction with the beta subunit of AP-2 prevent endocytosis-induced retinal degeneration. We further demonstrate that if the interaction between Arr2 and AP-2 is …


The Kini Kinesin Kif2a Is Required For Bipolar Spindle Assembly Through A Functional Relationship With Mcak, Neil J. Ganem, Duane A. Compton Aug 2004

The Kini Kinesin Kif2a Is Required For Bipolar Spindle Assembly Through A Functional Relationship With Mcak, Neil J. Ganem, Duane A. Compton

Dartmouth Scholarship

Although the microtubule-depolymerizing KinI motor Kif2a is abundantly expressed in neuronal cells, we now show it localizes to centrosomes and spindle poles during mitosis in cultured cells. RNAi-induced knockdown of Kif2a expression inhibited cell cycle progression because cells assembled monopolar spindles. Bipolar spindle assembly was restored in cells lacking Kif2a by treatments that altered microtubule assembly (nocodazole), eliminated kinetochore–microtubule attachment (loss of Nuf2), or stabilized microtubule plus ends at kinetochores (loss of MCAK). Thus, two KinI motors, MCAK and Kif2a, play distinct roles in mitosis, and MCAK activity at kinetochores must be balanced by Kif2a activity at poles for spindle …


Pf15p Is The Chlamydomonas Homologue Of The Katanin P80 Subunit And Is Required For Assembly Of Flagellar Central Microtubules, Erin E. Dymek, Paul A. Lefebvre, Elizabeth F. Smith Aug 2004

Pf15p Is The Chlamydomonas Homologue Of The Katanin P80 Subunit And Is Required For Assembly Of Flagellar Central Microtubules, Erin E. Dymek, Paul A. Lefebvre, Elizabeth F. Smith

Dartmouth Scholarship

Numerous studies have indicated that the central apparatus plays a significant role in regulating flagellar motility, yet little is known about how the central pair of microtubules or their associated projections assemble. Several Chlamydomonas mutants are defective in central apparatus assembly. For example, mutant pf15 cells have paralyzed flagella that completely lack the central pair of microtubules. We have cloned the wild-type PF15 gene and confirmed its identity by rescuing the motility and ultrastructural defects in two pf15 alleles, the original pf15a mutant and a mutant generated by insertional mutagenesis. Database searches using the 798-amino-acid polypeptide predicted from the complete …


Pv1 Is A Key Structural Component For The Formation Of The Stomatal And Fenestral Diaphragms, Radu V. Stan, Eugene Tkachenko, Ingrid R. Niesman May 2004

Pv1 Is A Key Structural Component For The Formation Of The Stomatal And Fenestral Diaphragms, Radu V. Stan, Eugene Tkachenko, Ingrid R. Niesman

Dartmouth Scholarship

PV1 is an endothelial-specific integral membrane glycoprotein associated with the stomatal diaphragms of caveolae, transendothelial channels, and vesiculo-vacuolar organelles and the diaphragms of endothelial fenestrae. Multiple PV1 homodimers are found within each stomatal and fenestral diaphragm. We investigated the function of PV1 within these diaphragms and their regulation and found that treatment of endothelial cells in culture with phorbol myristate acetate (PMA) led to upregulation of PV1. This correlated with de novo formation of stomatal diaphragms of caveolae and transendothelial channels as well as fenestrae upon PMA treatment. The newly formed diaphragms could be labeled with anti-PV1 antibodies. The upregulation …


A Role For Yip1p In Copii Vesicle Biogenesis, Matthew Heidtman, Catherine Z. Chen, Ruth N. Collins, Charles Barlowe Oct 2003

A Role For Yip1p In Copii Vesicle Biogenesis, Matthew Heidtman, Catherine Z. Chen, Ruth N. Collins, Charles Barlowe

Dartmouth Scholarship

Yeast Ypt1p-interacting protein (Yip1p) belongs to a conserved family of transmembrane proteins that interact with Rab GTPases. We encountered Yip1p as a constituent of ER-derived transport vesicles, leading us to hypothesize a direct role for this protein in transport through the early secretory pathway. Using a cell-free assay that recapitulates protein transport from the ER to the Golgi complex, we find that affinity-purified antibodies directed against the hydrophilic amino terminus of Yip1p potently inhibit transport. Surprisingly, inhibition is specific to the COPII-dependent budding stage. In support of this in vitro observation, strains bearing the temperature-sensitive yip1-4 allele accumulate ER membranes …


Minus-End Capture Of Preformed Kinetochore Fibers Contributes To Spindle Morphogenesis, Alexey Khodjakov, Lily Copenagle, Michael B. Gordon, Duane A. Compton, Tarun M. Kapoor Mar 2003

Minus-End Capture Of Preformed Kinetochore Fibers Contributes To Spindle Morphogenesis, Alexey Khodjakov, Lily Copenagle, Michael B. Gordon, Duane A. Compton, Tarun M. Kapoor

Dartmouth Scholarship

Near-simultaneous three-dimensional fluorescence/differential interference contrast microscopy was used to follow the behavior of microtubules and chromosomes in living alpha-tubulin/GFP-expressing cells after inhibition of the mitotic kinesin Eg5 with monastrol. Kinetochore fibers (K-fibers) were frequently observed forming in association with chromosomes both during monastrol treatment and after monastrol removal. Surprisingly, these K-fibers were oriented away from, and not directly connected to, centrosomes and incorporated into the spindle by the sliding of their distal ends toward centrosomes via a NuMA-dependent mechanism. Similar preformed K-fibers were also observed during spindle formation in untreated cells. In addition, upon monastrol removal, centrosomes established a transient …


Asymmetry Of The Central Apparatus Defines The Location Of Active Microtubule Sliding In Chlamydomonas Flagella, Matthew J. Wargo, Elizabeth F. Smith Jan 2003

Asymmetry Of The Central Apparatus Defines The Location Of Active Microtubule Sliding In Chlamydomonas Flagella, Matthew J. Wargo, Elizabeth F. Smith

Dartmouth Scholarship

Regulation of ciliary and flagellar motility requires spatial control of dynein-driven microtubule sliding. However, the mechanism for regulating the location and symmetry of dynein activity is not understood. One hypothesis is that the asymmetrically organized central apparatus, through interactions with the radial spokes, transmits a signal to regulate dynein-driven microtubule sliding between subsets of doublet microtubules. Based on this model, we hypothesized that the orientation of the central apparatus defines positions of active microtubule sliding required to control bending in the axoneme. To test this, we induced microtubule sliding in axonemes isolated from wild-type and mutant Chlamydomonas cells, and then …


Binding Of Matrix Attachment Regions To Lamin Polymers Involves Single-Stranded Regions And The Minor Groove., M. E. Eva Ludérus, Jan L. Den Blaauwen, Oncko J. De Smit, Duane A. Compton, Roel Van Driel Jan 1994

Binding Of Matrix Attachment Regions To Lamin Polymers Involves Single-Stranded Regions And The Minor Groove., M. E. Eva Ludérus, Jan L. Den Blaauwen, Oncko J. De Smit, Duane A. Compton, Roel Van Driel

Dartmouth Scholarship

Chromatin in eukaryotic nuclei is thought to be partitioned into functional loop domains that are generated by the binding of defined DNA sequences, named MARs (matrix attachment regions), to the nuclear matrix. We have previously identified B-type lamins as MAR-binding matrix components (M. E. E. Ludérus, A. de Graaf, E. Mattia, J. L. den Blaauwen, M. A. Grande, L. de Jong, and R. van Driel, Cell 70:949-959, 1992). Here we show that A-type lamins and the structurally related proteins desmin and NuMA also specifically bind MARs in vitro. We studied the interaction between MARs and lamin polymers in molecular detail …


In Vitro Reconstitution Of Exocytosis From Sea Urchin Egg Plasma Membrane And Isolated Cortical Vesicles, Joseph H. Crabb, Paul A. Modern, Robert C. Jackson May 1987

In Vitro Reconstitution Of Exocytosis From Sea Urchin Egg Plasma Membrane And Isolated Cortical Vesicles, Joseph H. Crabb, Paul A. Modern, Robert C. Jackson

Dartmouth Scholarship

We have succeeded in reconstituting an exocytotically active egg cortex fraction by recombining purified cortical vesicles (CVs) with egg plasma membrane (PM). CVs were dislodged from a suspension of egg cortex by gentle homogenization in a dissociative buffer with a pH of 9.1, and purified by two rounds of differential centrifugation. Egg PM was prepared by shearing the cortical vesicles from a cortical lawn preparation with a jet of isotonic buffer. PM lawns produced by this procedure consist of an array of CV-free PM fragments attached via their extracellular surface to a polylysine coated glass slide. When a neutralized suspension …


Atp-Dependent Formation And Motility Of Aster-Like Structures With Isolated Calf Brain Microtubule Proteins., Richard C. Weisenberg, Robert D. Allen, Shinya Inoue Mar 1986

Atp-Dependent Formation And Motility Of Aster-Like Structures With Isolated Calf Brain Microtubule Proteins., Richard C. Weisenberg, Robert D. Allen, Shinya Inoue

Dartmouth Scholarship

Microtubule proteins isolated from calf brain will undergo gelation-contraction in the presence of ATP. We have now examined this process by video-enhanced contrast microscopy. After ATP addition to steady-state microtubules, slow (1-5 micron/min), linear movements of particles and microtubules toward aggregation centers occur. The resulting structures resemble mitotic spindle asters. During the time when gel contraction occurs, asters move (at 1-5 micron/min) toward other nearby asters. This is accompanied by the apparent shortening of the microtubules running between the asters. This is the first example of isolated microtubules undergoing a process that has similarities to half-spindle shortening during anaphase A. …


Spermidine-Condensed Phi X174 Dna Cleavage By Micrococcal Nuclease: Torus Cleavage Model And Evidence For Unidirectional Circumferential Dna Wrapping., Kenneth A. Marx, Thomas C. Reynolds Nov 1982

Spermidine-Condensed Phi X174 Dna Cleavage By Micrococcal Nuclease: Torus Cleavage Model And Evidence For Unidirectional Circumferential Dna Wrapping., Kenneth A. Marx, Thomas C. Reynolds

Dartmouth Scholarship

Spermidine-condensed phi X174 replicative form (RF) II DNA was digested with micrococcal nuclease to yield seven identifiable DNA bands forming an arithmetic fragment-length series. The DNA monomer unit length was found to be 780 +/- 80 base pairs. This result is most consistent with a proposed model for micrococcal nuclease cleavage of a DNA torus organized by the unidirectional, circumferential wrapping of B-geometry DNA. By a topological consideration, the blunt-end-rod-fusion model for torus formation [Eickbush, T. H. & Moudrianakis, E. N. (1978) Cell 13, 295-306] is shown to be inconsistent with our empirical solution results. We propose a continuous, circumferential …