Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Nanoparticles

Discipline
Institution
Publication Year
Publication

Articles 1 - 30 of 54

Full-Text Articles in Nanoscience and Nanotechnology

Utilizing Fluorescent Nanoscale Particles To Create A Map Of The Electric Double Layer, Quintus Owen May 2023

Utilizing Fluorescent Nanoscale Particles To Create A Map Of The Electric Double Layer, Quintus Owen

Theses and Dissertations

The interactions between charged particles in solution and an applied electric field follow several models, most notably the Gouy-Chapman-Stern model, for the establishment of an electric double layer along the electrode, but these models make several assumptions of ionic concentrations and an infinite bulk solution. As more scientific progress is made for the finite and single molecule reactions inside microfluidic cells, the limitations of the models become more extreme. Thus, creating an accurate map of the precise response of charged nanoparticles in an electric field becomes increasingly vital. Another compounding factor is Brownian motion’s inverse relationship with size: large easily …


Non-Equilibrium Colloidal Phenomena In Magnetic Fields And Photoillumination: From Controlling Living Microbots To Understanding Microplastics, Ahmed Al Harraq Jan 2023

Non-Equilibrium Colloidal Phenomena In Magnetic Fields And Photoillumination: From Controlling Living Microbots To Understanding Microplastics, Ahmed Al Harraq

LSU Doctoral Dissertations

Colloids are a ubiquitous class of materials composed of microscopic particles suspended in a continuous phase which are found in everyday products and in nature. Colloids are also useful models for studying the spontaneous arrangement of matter from individual building blocks to mesophases. Standard treatment of colloid science is based on the assumption of equilibrium conditions, as defined in traditional thermodynamics. However, novel assembly mechanisms and motility are unlocked by pushing colloids away from equilibrium using external energy. In addition, many colloids in nature and in industrial applications exchange energy and mass with the surrounding environment thus behaving in a …


Effect Of Decorating Super Paramagnetic Iron Oxide Nanoparticles With Silver Nanoparticles On Their Magneto-Photo Thermal Heating Efficiency, Anthony Joseph Afful Jan 2023

Effect Of Decorating Super Paramagnetic Iron Oxide Nanoparticles With Silver Nanoparticles On Their Magneto-Photo Thermal Heating Efficiency, Anthony Joseph Afful

All Graduate Theses, Dissertations, and Other Capstone Projects

Cancer treatment is rather dangerous to the body, often involving many secondary effects, including nausea, hair loss, and weight fluctuations. The search for non-invasive, highly efficient, and targetable treatments ameliorates these issues. Super paramagnetic iron oxide nanoparticles (SPIONS) have been used for other medical purposes such as magnetic resonance imaging contrast agent and is being extensively studied as a potential candidate for many cancer therapeutic and diagnostic approaches due to its biocompatibility and superior magnetic properties. When subjected to an external alternating magnetic field SPIONS generate heat mainly due to the friction of the SPIONS against the fluid it is …


Biomimetic Strategies To Control Therapeutic Release From Novel Dna Nanoparticles, Robert J. Mosley Jun 2022

Biomimetic Strategies To Control Therapeutic Release From Novel Dna Nanoparticles, Robert J. Mosley

Theses and Dissertations

The inherent chemical, mechanical, and structural properties of nucleic acids make them ideal candidates for the formulation of tunable, personalized drug nanocarriers. However, none so far have exploited these properties for the controlled release of therapeutic drugs. In this dissertation, a biomimetic approach to controlling drug release is exhibited by specifically manipulating the architecture of novel, DNA nanoparticles to take advantage of drug binding mechanisms of action. Rationally designed DNA strands were immobilized on gold surfaces via a terminal thiol modification. Immobilized monomers can be manipulated to form distinct monolayer architectures including flat, folded, coiled, or stretched structures. Increasing the …


Nanoparticles For Biomedical Applications, Joseph Kim May 2022

Nanoparticles For Biomedical Applications, Joseph Kim

Dissertations & Theses (Open Access)

This thesis presents development and evaluation of the potential of three new nanoparticles for biomedical applications. With the rapid growth of the field of nanoscience, researchers have explored developing nanoparticles for various biomedical applications, including imaging, therapy, and drug delivery. This thesis demonstrates the development of two C­60 fullerene based nanoparticles and one boron based nanoparticle to answer key questions related to their biological potential.

In the first part of the thesis, we describe synthesis and characterization of a pure boron nanoparticle containing asolectin phospholipid-based liposome construct prepared using a water-in-oil emulsion method, as a novel alternative agent for …


Structural Evolution During Synthesis And Annealing Of Platinum-Nickel Bimetallic Nanoparticles, Xiner Lu May 2022

Structural Evolution During Synthesis And Annealing Of Platinum-Nickel Bimetallic Nanoparticles, Xiner Lu

All Theses

In the past years, there has been an increasing interest in synthesizing Pt alloy nanocrystals to achieve high catalytic performance for energy-related applications. Pt-Ni nanoparticles (NPs) have shown high electrocatalytic activity for electrocatalysis and thermal catalysis. However, the stability of surface structures and compositions still needs to be improved to obtain better long-term catalytic stability. It is noted that thermal annealing can adjust the surface structures and compositions to improve the stability. Transmission electron microscopy (TEM) plays a vital role in characterizing the morphology, structure, and composition of nanoparticles. Specifically, the utilization of in situ TEM can allow for observing …


Incorporation Of Zinc In Pre-Alloyed Cuin[Zn]S2/Zns Quantum Dots, Jean Carlos Morales Orocu Dec 2021

Incorporation Of Zinc In Pre-Alloyed Cuin[Zn]S2/Zns Quantum Dots, Jean Carlos Morales Orocu

Graduate Theses and Dissertations

Since the early 2000s heavy-metal-free quantum dots (QDs) such as CuInS2/ZnS have attempted to replace CdSe, their heavy-metal-containing counterparts. CuInS2/ZnS is synthesized in a two-step process that involves the fabrication of CuInS2 (CIS) nanocrystals (NCs) followed by the addition of zinc precursors. Instead of the usual core/shell architecture often exhibited by binary QDs, coating CIS QDs results in alloyed and/or partially alloyed cation-exchange (CATEX) QDs. The effect that zinc has on the properties of CIS NCs was studied by incorporating zinc during the first step of the synthesis. Different In:Cu:Zn ratios were employed in this study, maintaining a constant 4:1 …


Zein And Lignin-Based Nanoparticles As Delivery Systems: Pesticide Release And Nanoparticle Health Impact On Soybean Plants, Fallon Polette Salinas Gonzalez Jan 2021

Zein And Lignin-Based Nanoparticles As Delivery Systems: Pesticide Release And Nanoparticle Health Impact On Soybean Plants, Fallon Polette Salinas Gonzalez

LSU Doctoral Dissertations

This research examined the effect of biodegradable, polymeric, lignin-based nanoparticles (LNPs, 113.8±3.4, negatively charged) and zein nanoparticles (ZNP, 141.6±3.9, positively charged) on soybean plant health. The LNPs were synthesized from lignin, covalently linked to poly(lactic-co-glycolic) acid by emulsion evaporation. ZNPs were synthesized by nanoprecipitation. Soybeans grown hydroponically were treated with three concentrations (0.02, 0.2, and 2 mg/ml) of NPs at 28 days after germination. The effect of ZNPs and LNPs on plant health was determined through analysis of root and stem length, chlorophyll concentration, dry biomass of roots and stem, as well as carbon, nitrogen, and micronutrient absorption after 1, …


Investigation Of Iron-Nickel Based Nanoparticles As Catalysts For Oxygen Evolution Reaction (Oer), Prashant Acharya Jan 2021

Investigation Of Iron-Nickel Based Nanoparticles As Catalysts For Oxygen Evolution Reaction (Oer), Prashant Acharya

Graduate Theses and Dissertations

Hydrogen fuel is increasingly seen as an appealing alternative by both the scientific and the industrial communities in the drive towards a clean energy future. Hydrogen, unlike fossil-based fuels, does not release carbon dioxide, a chief component of greenhouse gases, upon combustion. However, more than 95% of the hydrogen in the world is still produced by burning fossil fuels as this method is currently the only economically feasible option at a large industrial scale.

Water electrolysis shows a lot of potential in both hydrogen generation and in the storage of energy from renewable sources such as wind and sunlight. Likewise, …


The Varied Thermal Response Of Magnetic Iron-Oxide Nanoparticles During Induction Heating In Liquid And Solid-Liquid Phase Change Mediums, Joshua Tompkins Dec 2020

The Varied Thermal Response Of Magnetic Iron-Oxide Nanoparticles During Induction Heating In Liquid And Solid-Liquid Phase Change Mediums, Joshua Tompkins

Graduate Theses and Dissertations

This study investigates the induction heating response of uncapped iron oxide nanoparticles sonically dispersed as a nanofluid and mechanically distributed in solid phase change materials. The nanoparticles examined have a mean diameter of 14.42 nm and are magnetically heated in an alternating magnetic field at an amplitude of 72.6 kA/m at frequencies of 217, 303, and 397 kHz. Nanoparticle characterization was undertaken through transition electron microscopy, x-ray diffraction, and dynamic light scattering when in suspension. Carrier fluids were characterized through viscosity, heat capacity, and density measurements which were used in the calorimetric calculation of the specific absorption rate (SAR) of …


Lanthanide Nanoparticles As Contrast Agents For In Vivo Dual Energy Microcomputed Tomography Of The Mouse Vasculature, Charmainne Cruje Oct 2020

Lanthanide Nanoparticles As Contrast Agents For In Vivo Dual Energy Microcomputed Tomography Of The Mouse Vasculature, Charmainne Cruje

Electronic Thesis and Dissertation Repository

Dual energy (DE) computed tomography (CT) has the capability to influence medicine and pre-clinical research by providing quantitative information that can detect nascent lesions, identify perfusion restoration or inhomogeneities within tissues, and recognize the presence of calcium deposits. A wide variety of instrumentation techniques and scan protocols have been developed for DE CT, with a common goal of acquiring a pair of images that reports the attenuation of a given volume to two different x-ray distributions. While DE image acquisition has benefitted from technical advancements in CT, the contrast agents that are used are still predominantly composed of iodinated small …


Synthesis, Self-Assembly And High-Pressure Properties Of Nanoparticles And Hybrid Nanocomposites, Lingyao Meng Jul 2020

Synthesis, Self-Assembly And High-Pressure Properties Of Nanoparticles And Hybrid Nanocomposites, Lingyao Meng

Nanoscience and Microsystems ETDs

Nanoparticles have gained significant scientific interests owing to their unique structural dimensions, size- and shape-tunable properties, and numerous fascinating applications, from opto-electronics, sensor devices, to energy, environmental, and medical fields. Furthermore, the synergistic integration of other materials, including organic polymers, with nanoparticles provides new opportunities and strategies to obtain nanocomposites with superior properties and functionalities. While there is already significant research on the synthesis and characterizations of nanoparticles and hybrid nanocomposites, some research questions, such as how to design and control the interfacial morphology in polymer/nanoparticle hybrid nanocomposites, how to synthesize metal- organic framework (MOF) nanoparticles in well-defined and uniform …


Hyaluronic Acid Coated Targeted Lipid Micellar Nanoparticle As A Delivery Vehicle For Lapatinib And Ketoconazole In Egfr Mutated Lung Cancer, Nadia Tasnim Ahmed Jun 2020

Hyaluronic Acid Coated Targeted Lipid Micellar Nanoparticle As A Delivery Vehicle For Lapatinib And Ketoconazole In Egfr Mutated Lung Cancer, Nadia Tasnim Ahmed

USF Tampa Graduate Theses and Dissertations

Background: According to the American Cancer Society, lung cancer was accountable for over 142,000 deaths in the USA in 2019. Common mutations related to lung cancer mainly occur in TP53, EGFR, and KRAS genes. Lapatinib is a small molecule tyrosine kinase inhibitor which acts reversibly on both epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2). Overexpression of EGFR leads to increased production and signaling of proteins that cause upregulation of cellular proliferation, cholesterol synthesis and resistance to apoptosis. Ketoconazole is an imidazole antifungal agent which works principally by inhibiting the enzyme cytochrome P450 14α-demethylase (CYP51A1) …


Scanning Electron Microscopy (Sem) Investigation Of Morphology Changes In The Reduction Of Silica Nanoparticles To Elemental Silicon, Allison M. Cairns Apr 2020

Scanning Electron Microscopy (Sem) Investigation Of Morphology Changes In The Reduction Of Silica Nanoparticles To Elemental Silicon, Allison M. Cairns

University Honors Theses

The application of silicon nanoparticles varies from energy storage materials, to drug-delivery, and molecular recognition. Various chemical and physical properties of the Si nanoparticles arise from their morphology. This paper aims to reveal the morphology of Si nanoparticles following magnesiothermic reduction of silica (SiO2) nanoparticles. Two sets of SiO2 nanoparticles were used, commercially available NanoXact nanoparticles and laboratory-synthesized Stöber nanoparticles. A Zeiss Sigma VP FEG SEM was used to examine the morphology. Following the magnesiothermic reduction, the nanoparticles were etched with HF. Ten sets of images were taken of both Stöber and NanoXact nanoparticles: 1,2: the SiO …


Engineered Nanoparticles For Site-Specific Bioorthogonal Catalysis: Imaging And Therapy, Riddha Das Mar 2020

Engineered Nanoparticles For Site-Specific Bioorthogonal Catalysis: Imaging And Therapy, Riddha Das

Doctoral Dissertations

Bioorthogonal catalysis offers a strategy for chemical transformations complementary to bioprocesses and has proven to be a powerful tool in biochemistry and medical sciences. Transition metal catalysts (TMCs) have emerged as a powerful tool to execute selective chemical transformations, however, lack of biocompatibility and stability limits their use in biological applications. Incorporation of TMCs into nanoparticle monolayers provides a versatile strategy for the generation of bioorthogonal nanocatalysts known as “nanozymes”. We have fabricated a family of nanozymes using gold nanoparticles (AuNPs) as scaffolds featuring diverse chemical functional groups for controlled localization of nanozymes in biological environments, providing unique strategies for …


Formulation And Validation Of Nanoparticle Controlled Delivery For Chemotherapeutic Drug Products, Shani L. Levit Jan 2020

Formulation And Validation Of Nanoparticle Controlled Delivery For Chemotherapeutic Drug Products, Shani L. Levit

Theses and Dissertations

Taxol, a formulation of paclitaxel (PTX), is one of the most widely used anticancer drugs, particularly for treating recurring ovarian carcinomas following surgery. Clinically, PTX is used in combination with other drugs such as lapatinib (LAP) to increase treatment efficacy. Delivering drug combinations with nanoparticles has the potential to improve chemotherapy outcomes. In this study, we use Flash NanoPrecipitation, a rapid, scalable process to encapsulate weakly hydrophobic drugs (logP in vitro. Encapsulating either PTX or LAP into nanoparticles increases drug potency. When PTX and LAP are co-loaded in the same nanoparticle, they have a synergistic effect that is greater than …


A Ph-Sensitive Delivery System For The Prevention Of Dental Caries Using Salivary Proteins, Yi Zhu May 2019

A Ph-Sensitive Delivery System For The Prevention Of Dental Caries Using Salivary Proteins, Yi Zhu

Electronic Thesis and Dissertation Repository

Dental caries remains one of the most common chronic diseases worldwide. Salivary proteins such as histatins have demonstrated biological functions directly related to tooth homeostasis and prevention of dental caries. However, histatins are susceptible to the high proteolytic activities in the oral environment. Therefore, pH-sensitive chitosan nanoparticles (CNs) have been proposed as potential carriers to target major oral diseases that occur under acidic conditions (e.g. dental caries and dental erosion). Four different types of chitosan polymers were investigated and the optimized CNs successfully loaded histatin 3 and released it selectively under acidic conditions. Through loading the survival time of histatin …


Carbon-Supported Transition Metal Nanoparticles For Catalytic And Electromagnetic Applications, Kavita Meduri Nov 2018

Carbon-Supported Transition Metal Nanoparticles For Catalytic And Electromagnetic Applications, Kavita Meduri

Dissertations and Theses

Recently, there has been growing interest in using transition metals (TM) for catalytic and electromagnetic applications, due to the ability of TMs to form stable compounds in multiple oxidation states. In this research, the focus has been on the synthesis and characterization of carbon-supported TM nanoparticles (NPs), specifically palladium (Pd) and gold (Au) NPs, for catalytic applications, and transition metal oxides (TMO) NPs, specifically Fe3O4 NPs for electromagnetic applications. Carbon supports have several advantages, such as enabling even distribution of particles, offering large specific surface area with excellent electron conductivity, and relative chemical inertness.

In this dissertation, …


A New Approach To The Development Of An Rsv Anti-Viral Targeted Nanocarrier For Dual Inhibition Of Viral Infection And Replication, Anthony N. Singer Jun 2018

A New Approach To The Development Of An Rsv Anti-Viral Targeted Nanocarrier For Dual Inhibition Of Viral Infection And Replication, Anthony N. Singer

USF Tampa Graduate Theses and Dissertations

Respiratory Syncytial Virus (RSV) is a potentially life-threatening respiratory pathogen that infects approximately 64 million children and immunocompromised adults globally per year. Currently, there is a need for prophylactic and therapeutic approaches effective against primary and secondary RSV infections. This project focuses on the development of a simple, smart, and scalable anti-RSV nanotherapeutic that combines novel cellular antiviral defense mechanisms targeting the inhibition of viral fusion and replication. An ICAM-1 targeted liposomal nanocarrier will be synthesized and coated with a layer of chitosan containing the anti-fusion HR2-D peptide as an extracellular defense mechanism. Additionally, chitosan complexed to dual expressing short …


Surface Area And Electrocatalytic Properties Of Feni Nanoparticles For The Oxygen Evolution Reaction (Oer), James Burrow May 2018

Surface Area And Electrocatalytic Properties Of Feni Nanoparticles For The Oxygen Evolution Reaction (Oer), James Burrow

Chemical Engineering Undergraduate Honors Theses

Iron-nickel bimetallic electrocatalysts have recently emerged as some of the best candidates for the oxygen evolution reaction (OER) in alkaline electrolyte. Understanding the effects of composition and morphology of iron-nickel nanoparticles is crucial for optimization and enhanced electrocatalyst performance. Both physical surface area and electrochemical surface area (ECSA) are functions of morphology. In this study, four different iron-nickel nanoparticle catalysts were synthesized. The catalysts were varied based on morphology (alloy versus core-shell) and composition (low, medium, and high stabilizer concentration). Brunauer-Emmett-Teller (BET) surface area analysis was conducted on three of the synthesized iron-nickel nanoparticles using a physisorption analyzer while electrochemical …


Mesoscale Computational Studies Of Thin-Film Bijels, Joseph M. Carmack May 2018

Mesoscale Computational Studies Of Thin-Film Bijels, Joseph M. Carmack

Graduate Theses and Dissertations

Bijels are a relatively new class of soft materials that have many potential applications in the technology areas of energy, medicine, and environmental sustainability. They are formed by the arrest of binary liquid spinodal decomposition by a dispersion of solid colloidal nanoparticles. This dissertation presents an in-depth simulation study of Bijels constrained to thin-film geometries and in the presence of electric fields. We validate the computational model by comparing simulation results with previous computational modeling and experimental research. In the absence of suspended particles, we demonstrate that the model accurately captures the rich kinetics associated with diffusion-based surface-directed spinodal decomposition. …


Synthesis, Characterization, And Enhanced Magnetic Properties Of Iron Carbide Nanomaterials, Brent M. Williams Jan 2017

Synthesis, Characterization, And Enhanced Magnetic Properties Of Iron Carbide Nanomaterials, Brent M. Williams

Theses and Dissertations

Permanent magnets are classified as hard magnetic materials with the main purpose of generating flux for applications such as electric motors, turbines, and hard drives. High coercivity, magnetic remanence, and saturation values with high stability are some of the requirements for permanent magnets. Rare-earth magnets including neodymium and samarium based magnets are known to have superior magnetic properties due to their high magnetocrystalline anisotropy. However, due to the price of rare-earth materials development of alternate permanent magnets composed of inexpensive materials is an ongoing process. Previously cobalt carbide (CoxC) have shown promise as a potential rare-earth free magnet …


Coarse-Grained Simulations Of The Self-Assembly Of Dna-Linked Gold Nanoparticle Building Blocks, Charles Wrightsman Armistead Dec 2016

Coarse-Grained Simulations Of The Self-Assembly Of Dna-Linked Gold Nanoparticle Building Blocks, Charles Wrightsman Armistead

Graduate Theses and Dissertations

The self-assembly of nanoparticles (NPs) of varying shape, size, and composition for the purpose of constructing useful nanoassemblies with tailored properties remains challenging. Although progress has been made to design anisotropic building blocks that exhibit the required control for the precise placement of various NPs within a defined arrangement, there still exists obstacles in the technology to maximize the programmability in the self-assembly of NP building blocks. Currently, the self-assembly of nanostructures involves much experimental trial and error. Computational modeling is a possible approach that could be utilized to facilitate the purposeful design of the self-assembly of NP building blocks …


Ginseng Polysaccharides Nanoparticles - Synthesis, Characterization, And Biological Activity, Kazi Farida Akhter Aug 2016

Ginseng Polysaccharides Nanoparticles - Synthesis, Characterization, And Biological Activity, Kazi Farida Akhter

Electronic Thesis and Dissertation Repository

North American (NA) ginseng is a widely used medicinal plant. Polysaccharides (PS), the major medicinal fractions derived from NA ginseng root, have been shown several biological activities including anti-carcinogenic, anti-aging, immunostimulatory and antioxidant activity. This work focused on nanoprocessing of ginseng PS for enhancing their immunostimulation. Herein, we have developed a novel microfluidic approach to synthesize ginseng PS nanoparticles (NPs) from NA ginseng root. The microfluidics was found to provide unimodal PS spheres down to 20 nm with very narrow particle size distributions. In addition, the immunostimulating effect was investigated on Murine macrophage cell lines, with the results revealing an …


Symbiotic Plasmonic Nanomaterials: Synthesis And Properties, Abhinav Malasi May 2016

Symbiotic Plasmonic Nanomaterials: Synthesis And Properties, Abhinav Malasi

Doctoral Dissertations

Metal particles of the dimensions of the order of 1 to 100's of nanometers show unique properties that are not clearly evident in their bulk state. These nanoparticles are highly reactive and sensitive to the changes in the vicinity of the particle surface and hence find applications in the field of sensing of chemical and biological agents, catalysis, energy harvesting, data storage and many more. By synthesizing bimetallic nanoparticles, a single nanoparticle can show multifunctional characteristics. The focus of this thesis is to detail the synthesis and understand the properties of bimetallic nanomaterial systems that show interesting optical, chemical, and …


Investigating The Size Dependent Material Properties Of Nanoceria, Bushra B. Alam Jan 2016

Investigating The Size Dependent Material Properties Of Nanoceria, Bushra B. Alam

Legacy Theses & Dissertations (2009 - 2024)

Nanoceria is widely being investigated for applications as support materials for fuel cell catalysts, free radical scavengers, and as chemical and mechanical abrasives due to its high antioxidant capacity and its oxygen buffering capacity. This antioxidant or oxygen buffering capacity has been reported to be highly size dependent and related to its redox properties. However, the quantification of this antioxidant capacity has not been well defined or understood and has been often been carried out using colorimetric assays which do not directly correlate to ceria nanoparticle properties. Fabrication rules for developing materials with optimal antioxidant/oxygen buffering capacities are not yet …


Investigation Of The Optical And Sensing Characteristics Of Nanoparticle Arrays For High Temperature Applications, Gnanaprakash Dharmalingam Jan 2016

Investigation Of The Optical And Sensing Characteristics Of Nanoparticle Arrays For High Temperature Applications, Gnanaprakash Dharmalingam

Legacy Theses & Dissertations (2009 - 2024)

The monitoring of polluting gases such as CO and NOx emitted from gas turbines in power plants and aircraft is important in order to both reduce the effects of such gases on the environment as well as to optimize the performance of the respective power system. The need for emissions monitoring systems is further realized from increased regulatory requirements that are being instituted as a result of the environmental impact from increased air travel. Specifically, it is estimated that the contributions from aircraft emissions to total NOx emissions will increase from 4% to 17% between 2008 and 2020. Extensive fuel …


Tracking Silver, Gold, And Titanium Dioxide Nanoparticles Through Drinking Water Systems By Single Particle - Inductively Coupled Plasma - Mass Spectrometry, Ariel Renee Donovan Jan 2016

Tracking Silver, Gold, And Titanium Dioxide Nanoparticles Through Drinking Water Systems By Single Particle - Inductively Coupled Plasma - Mass Spectrometry, Ariel Renee Donovan

Masters Theses

"Single particle (SP)-ICP-MS methods were developed to characterize and quantify Ti-containing, titanium dioxide, silver, and gold NP concentration, size, size distribution and dissolved metal element concentration in surface water and treated drinking water. The effectiveness of conventional drinking water treatments (including lime softening, alum coagulation, filtration, and disinfection) to remove NPs from surface water was evaluated using six-gang stirrer jar test simulations. Six-gang stirrers were used to simulate drinking water treatments including lime softening, alum coagulation, powdered activated carbon sorption, filtration, and disinfection by free chlorine. Lime softening effectively removed most nanoparticles added. Source and drinking waters from three large …


In Vacuo Fabrication And Electronic Structure Characterization Of Atomic Layer Deposition Thin Films, Michael Schaefer Nov 2015

In Vacuo Fabrication And Electronic Structure Characterization Of Atomic Layer Deposition Thin Films, Michael Schaefer

USF Tampa Graduate Theses and Dissertations

Improvement of novel electronic devices is possible by tailor-designing the electronic structure at device interfaces. Common problems observed at interfaces are related to unwanted band alignment caused by the chemical diversity of interface partners, influencing device performance negatively. One way to address this problem is by introducing ultra-thin interfacial dipole layers, steering the band alignment in a desired direction. The requirements are strict in terms of thickness, conformity and low density of defects, making sophisticated deposition techniques necessary. Atomic layer deposition (ALD) with its Ångstrom-precise thickness control can fulfill those requirements.

The work presented here encompasses the implementation of an …


In Vitro Studies Of Gold And Gold Silica Nanoparticle Radiosensitization With Kilovoltage X-Rays, Gregory Colarch May 2015

In Vitro Studies Of Gold And Gold Silica Nanoparticle Radiosensitization With Kilovoltage X-Rays, Gregory Colarch

UNLV Theses, Dissertations, Professional Papers, and Capstones

Technological advances in the ability to construct and manipulate nanoscale particles have opened up the possibility of using solid metallic nanoparticles and mixed metal nanoshells as a means to increase dose enhancement and treatment efficacy to tumors. In order for nanoparticles to be an effective form of treatment, they must be delivered to tumors in sufficient concentrations so that there is a dose enhancement factor due to ionizing radiation, as well as being essentially non-toxic to healthy cells. Gold nanoparticles and silica-gold nanoshells fit these requirements. Gold has a high atomic number (Z=79), which gives a larger cross section for …