Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Physical Chemistry

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 33

Full-Text Articles in Nanoscience and Nanotechnology

Experimental And Simulation Study Of Reactive Silver Ink Droplet Evaporation, Weipeng Zhang Oct 2023

Experimental And Simulation Study Of Reactive Silver Ink Droplet Evaporation, Weipeng Zhang

Electronic Thesis and Dissertation Repository

The evaporation of particle-free silver ink droplets on heated substrates directly impacts the morphology of the resultant silver particles and films. In this thesis, COMSOL Multiphysics simulations of the solvent (water-ethylene glycol mixture) droplet evaporation process are used to explain the microflows, mass transfers, and heat distribution responsible for the experimental observations. The reactive ink incorporates fluoro-surfactant FS-31 and poly (acrylamide) (PAM) to suppress the coffee-ring effect that negatively impacts the electrical conductivity. Experiments show that the droplet evaporation process results in varied silver particle morphology, depending on the locations within the droplet, leading to uneven surfaces. Large particles (3 …


Quantifying Temperature-, Pressure-, And Nuclear Quantum Effects On Hydrophobic And Hydrophilic Water-Mediated Interactions, Justin T. Engstler Sep 2023

Quantifying Temperature-, Pressure-, And Nuclear Quantum Effects On Hydrophobic And Hydrophilic Water-Mediated Interactions, Justin T. Engstler

Dissertations, Theses, and Capstone Projects

Water-mediated interactions (WMIs) are responsible for diverse processes in aqueous solutions, including protein folding and nanoparticle aggregation. WMI may be affected by changes in temperature and pressure, and hence, they can alter chemical/physical processes that occur in aqueous environments. Traditionally, attention has been focused on hydrophobic interactions while, in comparison, the role of hydrophilic and hybrid (hydrophobic–hydrophilic) interactions have been mostly overlooked. Here, we study the role of T and P on the WMI between nanoscale (i) hydrophobic–hydrophobic, (ii) hydrophilic–hydrophilic, and (iii) hydrophilic–hydrophobic pairs of (hydroxylated/non-hydroxylated) graphene-based surfaces. We find that hydrophobic, hydrophilic, and hybrid interactions are all sensitive to …


Utilizing Fluorescent Nanoscale Particles To Create A Map Of The Electric Double Layer, Quintus Owen May 2023

Utilizing Fluorescent Nanoscale Particles To Create A Map Of The Electric Double Layer, Quintus Owen

Theses and Dissertations

The interactions between charged particles in solution and an applied electric field follow several models, most notably the Gouy-Chapman-Stern model, for the establishment of an electric double layer along the electrode, but these models make several assumptions of ionic concentrations and an infinite bulk solution. As more scientific progress is made for the finite and single molecule reactions inside microfluidic cells, the limitations of the models become more extreme. Thus, creating an accurate map of the precise response of charged nanoparticles in an electric field becomes increasingly vital. Another compounding factor is Brownian motion’s inverse relationship with size: large easily …


Study Of The Chemical Fabrication Process Of Nsom Probes And The Modification Of The Probe Surface, Muhammad Nazmul Hussain May 2022

Study Of The Chemical Fabrication Process Of Nsom Probes And The Modification Of The Probe Surface, Muhammad Nazmul Hussain

Theses and Dissertations

Near-field scanning optical microscopy (NSOM) merges scanning probe technology with the power of high-resolution optical microscopy and provides a natural view into the nanoworld. NSOM requires tapered probes with subwavelength optical apertures and wide cone angles to efficiently channel the illumination light to the tip apex so that it can acquire optical images beyond the diffraction limit. Tapered probes with a range of cone angles can be fabricated through chemical etching of optical fibers using hydrofluoric acid (HF) by varying the etching time. Apart from their use for NSOM imaging, such optical probes can also be transformed into nanosensors by …


Efficient Capture Of Co2 And Its Selective Reduction To Formic Acid Using Tin-Based Nanomaterials, Emmanuel Oluwaseun Abdul Feb 2022

Efficient Capture Of Co2 And Its Selective Reduction To Formic Acid Using Tin-Based Nanomaterials, Emmanuel Oluwaseun Abdul

Dissertations and Theses

CO2 emissions from the combustion of fossil fuels and other anthropogenic sources have become the main contributing factors to global warming. Chemical methods of absorbing/capturing CO2 from combustion flue gases have made it a sought-after approach in engineering emission solutions because of its simplistic and convenient operation and high absorption efficiency. The conversion of CO2 into renewable fuels and high energy density chemicals by clean and economic processes has drawn scientists' attention over the decades. The electrocatalytic conversion of CO2 using Sn-based materials has been demonstrated to be a promising method for producing formate, an important …


Electrochemical Gelation Of Metal Chalcogenide Quantum Dots, Chathuranga Chinthana Hewa Rahinduwage Jan 2022

Electrochemical Gelation Of Metal Chalcogenide Quantum Dots, Chathuranga Chinthana Hewa Rahinduwage

Wayne State University Dissertations

Quantum dots (QDs) are attractive because of their unique size-dependent optical and electronic properties and high surface area. They are tested in research for diverse applications, including energy conversion, catalysis, and sensing. Assembling QDs into functional solid-state devices while preserving their attractive properties is a challenge. Methods currently under the research are not effective in directly fabricating QDs onto devices, making large area assemblies, maintaining the high surface area by forming 3D porous structures, and conducting electricity for applications such as sensing. QD gels are an example of QD assemblies that consist of a 3D porous interconnected QD network. They …


The Profound Photophysical Effects Of Organic Chromophore Connectivity And Coupling, David J. Walwark Jr Nov 2021

The Profound Photophysical Effects Of Organic Chromophore Connectivity And Coupling, David J. Walwark Jr

Nanoscience and Microsystems ETDs

Through-bond and through-space interactions between chromophores are shown to have wide-ranging effects on photophysical outcomes upon light absorption in organic molecules. In collapsed poly(3-hexylthiophene), through-space coupling creates hybrid chromophores that act as energy sinks for nearby excitons and favorable sites for molecular oxygen to dock. Upon excitation with visible light the highly-coupled chromophores react with the docked oxygen and subsequently do not quench nearby excitons as efficiently. In tetramer arrays of perylene diimide chromophores the central moiety through-bond connectivity is synthesized in two variants which exhibit vastly different single-molecule blinking behavior and theoretically-predicted electronic transition character. In the more-connected tetramer …


Radial Basis Densities And The Density Functional-Based Atom-In-Molecule: Designing Charge-Transfer Potentials, Godwin Amo-Kwao Nov 2020

Radial Basis Densities And The Density Functional-Based Atom-In-Molecule: Designing Charge-Transfer Potentials, Godwin Amo-Kwao

Nanoscience and Microsystems ETDs

Classical potentials that are capable of describing charge transfer and charge polarization in complex systems are of central importance for classical atomistic simulation of biomolecules and materials. Current potentials—regardless of the system—do not generalize well, and, with the exception of highly-specialized empirical potentials tuned for specific systems, cannot describe chemical bond formation and breaking. The charge-transfer embedded atom method (CT-EAM), a formal, DFT-based extension to the original EAM for metals, has been developed to address these issues by modeling charge distortion and charge transfer in interacting systems using pseudoatom building blocks instead of the electron densities of isolated atoms. CT-EAM …


Spectroscopic Investigations Of Excited Charge Carriers In Ii-Vi Nanoparticles, William Matthew Sanderson May 2020

Spectroscopic Investigations Of Excited Charge Carriers In Ii-Vi Nanoparticles, William Matthew Sanderson

Arts & Sciences Electronic Theses and Dissertations

The large absorption cross sections and the tunability of the energetic spacings between the states in the conduction (CB) and valence band (VB) within a semiconductor nanoparticle (NP) make them promising media for capturing electromagnetic radiation and converting it into charge carriers, or electricity. In photovoltaic devices that incorporate semiconductor NPs, it would be ideal if every photon could be absorbed by a NP and the carriers could be collected with perfect efficiency and without loss of energy. The relaxation pathways of the carriers within the NPs down to the band edge and their fate at the band edge contribute …


Top-Down And Bottom-Up Fabrication Of Key Components In Miniature Energy Storage Devices, Wenhao Li Oct 2019

Top-Down And Bottom-Up Fabrication Of Key Components In Miniature Energy Storage Devices, Wenhao Li

Doctoral Dissertations

The advent of miniature electronic devices demands power sources of commensurate form factors. This spurs the research of micro energy storage devices, e.g., 3D microbatteries. A 3D microbattery contains nonplanar microelectrodes with high aspect ratio and high surface area, separated by a nanoscale electrolyte. The device takes up a total volume as small as 10 mm3, allowing it to serve on a chip and to provide power in-situ. The marriage of nanotechnology and electrochemical energy storage makes microbattery research a fascinating field with both scientific excitement and application prospect. However, successful fabrication of well-functioned key components …


Novel Avenues Toward Controlling The Photophysical Properties Of Ultra-Small Silicon Quantum Dots, Mohammed Abdelhameed Oct 2019

Novel Avenues Toward Controlling The Photophysical Properties Of Ultra-Small Silicon Quantum Dots, Mohammed Abdelhameed

Electronic Thesis and Dissertation Repository

Quantum dots (QDs) have attracted an increasing attention in the last decade over many conventional organic dyes. This is due to their unique optical properties including broad absorption spectra, high photostability, and size-tunable photoluminescence (PL). However, some toxicity concerns associated with traditional quantum dots have hindered their wide applicability. Interestingly, silicon quantum dots (SQDs) have been shown to be more advantageous than most of QDs thanks to their excellent biocompatibility and biodegradability, low cytotoxicity, and versatile surface functionalization capability. Thus, SQDs are promising candidates for various biological and biomedical applications such as bioimaging, biosensing, and photodynamic therapy. Unfortunately, only a …


Minimalistic Peptide-Based Supramolecular Systems Relevant To The Chemical Origin Of Life, Daniela Kroiss Sep 2019

Minimalistic Peptide-Based Supramolecular Systems Relevant To The Chemical Origin Of Life, Daniela Kroiss

Dissertations, Theses, and Capstone Projects

All forms of life are based on biopolymers, which are made up of a selection of simple building blocks, such as amino acids, nucleotides, fatty acids and sugars. Their individual properties govern their interactions, giving rise to complex supramolecular structures with highly specialized functionality, including ligand recognition, catalysis and compartmentalization. In this thesis, we aim to answer the question whether short peptides could have acted as precursors of modern proteins during prebiotic evolution. Using a combination of experimental and computational techniques, we screened a large molecular search space for peptide sequences that are capable of forming supramolecular complexes with adenosine …


Wave Function Engineering In Cdse/Pbs Core/Shell Nanocrystal Heterostructures, Brian Matthew Wieliczka Aug 2019

Wave Function Engineering In Cdse/Pbs Core/Shell Nanocrystal Heterostructures, Brian Matthew Wieliczka

Arts & Sciences Electronic Theses and Dissertations

Colloidal semiconducting nanocrystals hold significant potential for third generation photovoltaics as solution processable materials that can surpass the Shockley-Queisser limit through multiexciton generation. In pursuit of this goal, the synthesis and optical characterization of CdSe/PbS core/shell quantum dots is reported. The spectroscopic behavior of these particles demonstrates their potential for use in optoelectronic devices, taking advantage of wave function engineering of the electron and hole. The rock salt PbS shell grows on all sides of the underlying zinc blende CdSe quantum dot, creating a core/shell structure. With increasing shell thickness, the band edge absorption and photoluminescence transitions decrease in energy …


Defect Chemistry And Ion Intercalation During The Growth And Solid-State Transformation Of Metal Halide Nanocrystals, Bo Yin May 2019

Defect Chemistry And Ion Intercalation During The Growth And Solid-State Transformation Of Metal Halide Nanocrystals, Bo Yin

McKelvey School of Engineering Theses & Dissertations

Abstract of the Dissertation

Defect Chemistry and Ion Intercalation During the Growth and Solid-State Transformation of Metal Halide Nanocrystals

Semiconductor metal halides as light-sensitive materials have applications in multiple areas, such as photographic film, antibacterial agents and photocatalysts. One focus of this dissertation is to achieve novel morphologies of ternary silver bromoiodide (AgBr1-xIx, 0

For the silver halide system, we demonstrate that the anion composition of AgBr1-xIx nanocrystals determines their shape through the introduction of twin defects as the nanocrystals are made more iodide-rich. AgBr1-xIx nanocrystals grow as single-phase, solid solutions with the rock salt crystal structure for anions compositions …


Experimental And Computational Study On Magnetic Nanowires Of Layered Titanates, Caleb Layne Heath May 2019

Experimental And Computational Study On Magnetic Nanowires Of Layered Titanates, Caleb Layne Heath

Graduate Theses and Dissertations

The intricate nanostructures of layered titanates are unique among nanomaterials due to their easy and inexpensive syntheses. These nanomaterials have been proven valuable for use in industries as varied as energy, water treatment, and healthcare, and can be produced at industrial scales using already existent equipment. They have complex morphology, and surface structure well suited to chemical modification and doping. However, there is a longstanding debate on their lattice structure after the doping. There is a long-unmet need to understand, using both experimental and simulation methods, how dopants alter the clay-like layered crystal structure and associated physical and chemical properties. …


From Flasks To Applications: Design And Optimization Of Giant Quantum Dots Using Traditional And Automated Synthetic Methods, Christina J. Hanson Apr 2018

From Flasks To Applications: Design And Optimization Of Giant Quantum Dots Using Traditional And Automated Synthetic Methods, Christina J. Hanson

Nanoscience and Microsystems ETDs

Semiconducting nanocrystals, also known as quantum dots (QDs), that emit light with near-unity quantum yield and are extremely photostable are attractive options as down-conversion and direct electricity-to-light materials for a variety of applications including solid-state lighting, display technologies, bio-imaging and optical tracking. Standard QDs with a core/thin shell structure display fluorescence intermittency (blinking) and photobleaching when exposed to prolonged room temperature excitation for single dot measurements, as well as significant reabsorption and energy transfer when densely packed into polymers or at high solution concentrations.

We have developed thick shell “giant” QDs (gQDs), ultra-stable photon sources both at the ensemble and …


Morphology Controlled Synthesis Of Copper Based Multimetallic Nanostructures And Their Electrocatalytic Properties For Methanol Oxidation Reaction, Leanne Elizabeth Mathurin May 2017

Morphology Controlled Synthesis Of Copper Based Multimetallic Nanostructures And Their Electrocatalytic Properties For Methanol Oxidation Reaction, Leanne Elizabeth Mathurin

Graduate Theses and Dissertations

This research focuses on the development of shape-controlled synthesis of Cu NM, Cu-based bimetallic and trimetallic nanostructures, and their electrocatalytic properties for methanol oxidation reaction (MOR). Copper nanomaterials (Cu NM) with specific surface facets can tailor their catalytic activity. Understanding reagents responsible for Cu NM growth is important for morphology-controlled synthesis of the nanostructures. This research studies the halide influence on Cu NM growth and morphology in an oil-based synthesis. The morphology of the Cu NM varies with the halide type (i.e., Cl-, Br-, I-), and the halide concentration. Additionally, the type of Cu precursor also influenced the morphology of …


The Dawn Of New Quantum Dots: Synthesis And Characterization Of Ge1-Xsnx Nanocrystals For Tunable Bandgaps., Richard J. Esteves Jan 2016

The Dawn Of New Quantum Dots: Synthesis And Characterization Of Ge1-Xsnx Nanocrystals For Tunable Bandgaps., Richard J. Esteves

Theses and Dissertations

Ge1-xSnx alloys are among a small class of benign semiconductors with composition tunable bandgaps in the near-infrared spectrum. As the amount of Sn is increased the band energy decreases and a transition from indirect to direct band structure occurs. Hence, they are prime candidates for fabrication of Si-compatible electronic and photonic devices, field effect transistors, and novel charge storage device applications. Success has been achieved with the growth of Ge1-xSnx thin film alloys with Sn compositions up to 34%. However, the synthesis of nanocrystalline alloys has proven difficult due to larger discrepancies (~14%) in …


Degradation And Exciton Energy Transfer Studies In Single-Walled Carbon Nanotube Bundles, Abhishek Gottipati Jan 2016

Degradation And Exciton Energy Transfer Studies In Single-Walled Carbon Nanotube Bundles, Abhishek Gottipati

Legacy Theses & Dissertations (2009 - 2024)

Single walled carbon nanotubes (SWNTs) due to their unique optical behavior, large surface area, robust mechanical strength and electrical properties make them one of the ideal candidates for sensing and opto-electronic applications. In this work, we explore the energy transfer (exciton energy transfer-EET) phenomena occurring between nanotubes in bundles, using resonance Raman spectroscopy.


Surface Modification Of Noble Metal Nanostructures Toward Biomedical Applications, Samir V. Jenkins Jul 2015

Surface Modification Of Noble Metal Nanostructures Toward Biomedical Applications, Samir V. Jenkins

Graduate Theses and Dissertations

Noble metal nanostructures have seen a steady increase in biomedical application over the last several decades; new diagnostic and therapeutic modalities are under intense investigation. Many of these applications are possible because of post-synthetic modifications to the particle surface. These modifications take a variety of forms and can significantly affect the pharmacokinetics of these particles. In this work, various surface modifications were investigated. Particle agglomeration, which occurs when particle surfaces remain in contact, can significantly affect the toxicity and efficacy of a nanomedicine. Darkfield microscopy and single-particle ICP-MS were developed as complementary methods to detect agglomeration in blood, with the …


Inertial Force-Driven Synthesis Of Near-Infrared Plasmonic Nanosphere Composites: Physicochemical Characterizations, Joseph Noel Batta-Mpouma May 2015

Inertial Force-Driven Synthesis Of Near-Infrared Plasmonic Nanosphere Composites: Physicochemical Characterizations, Joseph Noel Batta-Mpouma

Graduate Theses and Dissertations

Near-infrared (NIR) responsive nanoparticles (NPs) like gold nanorods (GNRs) are important in biomedical fields because of their transparency for biological tissues. Although GNRs are sought after as contrast agents for theranostics in cancer studies, capping ligands like cetyltrimethylammonium bromide (CTAB) for the GNR synthesis are toxic for biological tissues. The need for an alternative to toxic GNRs is of interest to alleviate the problem.

This work aimed to optimize the synthesis of NIR responsive nanosphere composites (NSCs) by inertial force (g-force) using colloidal gold NPs as model, elucidate the mechanism for the NSC formation, and study their detailed physicochemical characteristics. …


Functional Nanocomposites From Self-Assembly Of Block Copolymers With Nanoparticles, Xinyu Wang Nov 2014

Functional Nanocomposites From Self-Assembly Of Block Copolymers With Nanoparticles, Xinyu Wang

Doctoral Dissertations

This dissertation studied the proper distribution and location control of nanoparticles (NPs) within block copolymer (BCP) templates. A facile ligand exchange reaction was introduced for the hydrophilic magnetic NPs (MNPs) that are readily dispersed in polar solvents with outstanding stability. Small molecule ligands were selected to associate strongly with particle surfaces, provide hydrophilic termini for polarity matching with polar solvents, and offer the potential for hydrogen-bonding interactions to facilitate NP incorporation into polymers. Areal ligand densities of NPs indicated a significant increase in the ligand coverage after the exchange reaction. Hydrophilic MNPs were shown to drive the self-assembly of BCPs …


Understanding The Influence Of Interfacial Chemistry In Core, Core/Shell And Core/Shell/Shell Quantum Dots On Their Fluorescence Properties, Omondi Bernard Omogo May 2014

Understanding The Influence Of Interfacial Chemistry In Core, Core/Shell And Core/Shell/Shell Quantum Dots On Their Fluorescence Properties, Omondi Bernard Omogo

Graduate Theses and Dissertations

Colloidal semiconductor nanocrystals (quantum dots) have received a great deal of attention due to their superior size tunable properties and promising applications in many areas. Some of the most practical areas of their applications include light emitting diodes (LED), photovoltaic and biological studies. Synthetic methods of these crystals is becoming more established with new strategies being reported every now and then. However, quantitative studies connecting the processes at the interface, namely core-ligand, core-shell and shell-shells, to the overall quantum dots fluorescence properties are not well understood. Specifically for cores, relating surface-atoms interactions, solvents, ligands nature, density and functional groups on …


Fabrication And Assembly Of Patchy Particles With Uniform Patches, Zhenping He Feb 2014

Fabrication And Assembly Of Patchy Particles With Uniform Patches, Zhenping He

Dissertations, Theses, and Capstone Projects

Patchy colloidal particles have been widely studied as the self-assembly building blocks to illustrate their potential for forming complex structures. The parameters affecting the final assembly structures include (i) patch size, shape, and number per particle, (ii) their relative positions, and (iii) the surface properties of the patch material. Recent computational studies have highlighted the impact of patch shape on assembly structure; however, there are only a limited number of methods that can provide control over patch shape and size. In this thesis, a template is introduced to the Glancing Angle Vapor Deposition method (GLAD) to create surface anisotropy on …


First-Principles Study Of The Electric Field Effect On The Water-Adsorbed Rutile Titanium Dioxide Surface, Abraham L. Hmiel Jan 2014

First-Principles Study Of The Electric Field Effect On The Water-Adsorbed Rutile Titanium Dioxide Surface, Abraham L. Hmiel

Legacy Theses & Dissertations (2009 - 2024)

TiO2 is a semiconducting material that has been used extensively in many industrial applications, and recently has become a candidate for photocatalytic water splitting, fuel cell anode support materials, sensors, and other novel nanodevices. The interface of TiO2 with water, historically well-studied but still poorly understood, presents a ubiquitous environmental challenge towards the ultimate practical usefulness of these technologies. Ground-state density functional theory (DFT) calculations studying the characteristics of molecular adsorption on model surfaces have been studied for decades, showing constant improvement in the description of the energetics and electronic structure at interfaces. These simulations are invaluable in the …


The Critical Role Of Mechanism-Based Models For Understanding And Predicting Liposomal Drug Loading, Binding And Release Kinetics, Sweta Modi Jan 2013

The Critical Role Of Mechanism-Based Models For Understanding And Predicting Liposomal Drug Loading, Binding And Release Kinetics, Sweta Modi

Theses and Dissertations--Pharmacy

Liposomal delivery systems hold considerable promise for improvement of cancer therapy provided that critical formulation design criteria can be met. The main objective of the current project was to enable quality by design in the formulation of liposomal delivery systems by developing comprehensive, mechanism-based mathematical models of drug loading, binding and release kinetics that take into account not only the therapeutic requirement but the physicochemical properties of the drug, the bilayer membrane, and the intraliposomal microenvironment.

Membrane binding of the drug affects both drug loading and release from liposomes. The influence of bilayer composition and phase structure on the partitioning …


Semiconductor Nanocrystals: From Quantum Dots To Quantum Disks, Zheng Li Aug 2012

Semiconductor Nanocrystals: From Quantum Dots To Quantum Disks, Zheng Li

Graduate Theses and Dissertations

The bottom-up colloidal synthesis opened up the possibility of finely tuning and tailoring the semiconductor nanocrystals. Numerous recipes were developed for the preparation of colloidal semiconductor nanocrystals, especially the traditional quantum dots. However, due to the lack of thorough understanding to those systems, the synthesis chemistry is still on the empirical level. CdS quantum dots synthesis in non-coordinating solvent were taken as a model system to investigate its molecular mechanism and formation process, ODE was identified as the reducing agent for the preparation of CdS nanocrystals, non-injection and low-temperature synthesis methods developed. In this model system, we not only proved …


Electrohydrodynamic Enhancement Of Heat Transfer And Mass Transport In Gaseous Media, Bulk Dielectric Liquids And Dielectric Thin Liquid Films, Seyed Reza Mahmoudi May 2012

Electrohydrodynamic Enhancement Of Heat Transfer And Mass Transport In Gaseous Media, Bulk Dielectric Liquids And Dielectric Thin Liquid Films, Seyed Reza Mahmoudi

Electronic Thesis and Dissertation Repository

Controlling transport phenomena in liquid and gaseous media through electrostatic forces has brought new important scientific and industrial applications. Although numerous EHD applications have been explored and extensively studied so far, the fast-growing technologies, mainly in the semiconductor industry, introduce new challenges and demands. These challenges require enhancement of heat transfer and mass transport in small scales (sometimes in molecular scales) to remove highly concentrated heat fluxes from reduced size devices. Electric field induced flows, or electrohydrodynamics (EHD), have shown promise in both macro and micro-scale devices.

Several existing problems in EHD heat transfer enhancements were investigated in this thesis. …


New Interfacial Nanochemistry On Sensory Bioscaffold-Membranes Of Nanobelts, Feng Chen May 2011

New Interfacial Nanochemistry On Sensory Bioscaffold-Membranes Of Nanobelts, Feng Chen

Graduate Theses and Dissertations

Nanostructured bioscaffolds and biosensors are evolving as popular and powerful tools in life science and biotechnology, due to the possible control of their surface and structural properties at the nm-scale. Being seldom discussed in literature and long-underexploited in materials and biomedical sciences, development of nanofiber-based sensory bioscaffolds has great promises and grand challenges in finding an ideal platform for low-cost quantifications of biological and chemical species in real-time, label-free, and ultrasensitive fashion. In this study, titanate nanobelts were first of all synthesized, from hydrothermal reactions of a NaOH (or KOH solution) with TiO2 powder, to possess underexploited structure and surface …


Self-Assembling Organic Semiconductors With Tunable Electronic Properties Based On Novel Asymmetric Phenazine And Bisphenazine, Kyoungmi Jang May 2011

Self-Assembling Organic Semiconductors With Tunable Electronic Properties Based On Novel Asymmetric Phenazine And Bisphenazine, Kyoungmi Jang

UNLV Theses, Dissertations, Professional Papers, and Capstones

Current demands in the area of organic semiconductors focus on both electronic and self-assembling properties. Particularly, one-dimensionally grown nanostructures of small organic semiconductors have drawn much attention for nanodevice fabrication. Self-assembly through various intermolecular interactions has been widely used to produce one-dimensionally grown nanostructures which can be induced by various methods such as rapid solution dispersion, a phase transfer method, vapor annealing, crystallization, and organogelation in conjunction with proper molecular design. Controlling the morphology of the nanostructures plays an important role in achieving desirable properties in optoelectronic device applications. While significant advancements have been made in developing molecular architectures for …