Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Purdue University

Theses/Dissertations

Molecular dynamics

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

Experimentally Validated 3d Md Model For Afm-Based Tip-Based Nanomanufacturing, Rapeepan Promyoo Dec 2016

Experimentally Validated 3d Md Model For Afm-Based Tip-Based Nanomanufacturing, Rapeepan Promyoo

Open Access Dissertations

In order to control AFM-based TBN to produce precise nano-geometry efficiently, there is a need to conduct a more focused study of the effects of different parameters, such as feed, speed, and depth of cut on the process performance and outcome. This is achieved by experimentally validating a MD simulation model of nanomachining, and using it to conduct parametric studies to guide AFM-based TBN. A 3D MD model with a larger domain size was developed and used to gain a unique insight into the nanoindentation and nanoscratching processes such as the effect of tip speed (e.g. effect of tip speed …


Nanoscale Phonon Thermal Conductivity Via Molecular Dynamics, Jonathan M. Dunn Apr 2016

Nanoscale Phonon Thermal Conductivity Via Molecular Dynamics, Jonathan M. Dunn

Open Access Theses

Molecular dynamics (MD) simulations provide a useful and simple means of calculating the nanoscale thermal properties of materials, which requires special analysis since the thermal properties of materials change when their dimensions reach the nanoscale. In this research, MD is used to investigate the nanoscale phonon thermal transport of materials that are attracting much interest in the areas of materials science and nuclear physics. In order to evaluate two distinct methods of calculating the thermal conductivity of materials using MD, the simulation methods are first applied to Si. Once an understanding of each simulation method is established, they are then …


Multiscale Modeling Of The Hierarchical Structure Of Cellulose Nanocrystals, Fernando Luis Dri Oct 2013

Multiscale Modeling Of The Hierarchical Structure Of Cellulose Nanocrystals, Fernando Luis Dri

Open Access Dissertations

Cellulose constitutes the most abundant renewable polymeric resource available today. It considered an almost inexhaustible source of raw material, and holds great promise in meeting increasing demands for environmentally friendly and biocompatible products. Key future applications are currently under development for the automotive, aerospace and textile industries. When cellulose fibers are subjected to acid hydrolysis, the fibers yield rod-like, highly crystalline residues called cellulose nanocrystals (CNCs). These particles show remarkable mechanical and chemical properties (e.g. Young Modulus ~200 GPa) within the range of other synthetically-developed reinforcement materials. Critical to the design of these materials are fundamental material properties, many of …