Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Nanoscience and Nanotechnology

Carrier Transport Engineering In Wide Bandgap Semiconductors For Photonic And Memory Device Applications, Ravi Teja Velpula Dec 2022

Carrier Transport Engineering In Wide Bandgap Semiconductors For Photonic And Memory Device Applications, Ravi Teja Velpula

Dissertations

Wide bandgap (WBG) semiconductors play a crucial role in the current solid-state lighting technology. The AlGaN compound semiconductor is widely used for ultraviolet (UV) light-emitting diodes (LEDs), however, the efficiency of these LEDs is largely in a single-digit percentage range due to several factors. Until recently, AlInN alloy has been relatively unexplored, though it holds potential for light-emitters operating in the visible and UV regions. In this dissertation, the first axial AlInN core-shell nanowire UV LEDs operating in the UV-A and UV-B regions with an internal quantum efficiency (IQE) of 52% are demonstrated. Moreover, the light extraction efficiency of this …


Gate-Controlled Quantum Dots In Two-Dimensional Tungsten Diselenide And One-Dimensional Tellurium Nanowires, Shiva Davari Dolatabadi Dec 2022

Gate-Controlled Quantum Dots In Two-Dimensional Tungsten Diselenide And One-Dimensional Tellurium Nanowires, Shiva Davari Dolatabadi

Graduate Theses and Dissertations

This work focuses on the investigation of gate-defined quantum dots in two-dimensional transition metal dichalcogenide tungsten diselenide (WSe2) as a means to unravel mesoscopic physical phenomena such as valley-contrasting physics in WSe2 flakes and its potential application as qubit, as well as realizing gate-controlled quantum dots based on elementaltellurium nanostructures which may unlock the topological nature of the host material carriers such as Weyl states in tellurium nanowires.The fabrication and characterization of gate-defined hole quantum dots in monolayer and bilayer WSe2 are reported. The gate electrodes in the device design are located above and below the WSe2 nanoflakes to accumulate …


Subwavelength Engineering Of Silicon Photonic Waveguides, Farhan Bin Tarik Aug 2022

Subwavelength Engineering Of Silicon Photonic Waveguides, Farhan Bin Tarik

All Dissertations

The dissertation demonstrates subwavelength engineering of silicon photonic waveguides in the form of two different structures or avenues: (i) a novel ultra-low mode area v-groove waveguide to enhance light-matter interaction; and (ii) a nanoscale sidewall crystalline grating performed as physical unclonable function to achieve hardware and information security. With the advancement of modern technology and modern supply chain throughout the globe, silicon photonics is set to lead the global semiconductor foundries, thanks to its abundance in nature and a mature and well-established industry. Since, the silicon waveguide is the heart of silicon photonics, it can be considered as the core …


Characterization Of Electrophoretic Deposited Zinc Oxide Nanopartices For The Fabrication Of Next-Generation Nanoscale Electronic Applications, Fawwaz Abduh A. Hazzazi Jul 2022

Characterization Of Electrophoretic Deposited Zinc Oxide Nanopartices For The Fabrication Of Next-Generation Nanoscale Electronic Applications, Fawwaz Abduh A. Hazzazi

LSU Doctoral Dissertations

Several reports state that it is crucial to analyze nanoscale semiconductor materials and devices with potential benefits to meet the need for next-generation nanoelectronics, bio, and nanosensors. The progress in the electronics field is as significant now, with modern technology constantly evolving and a greater focus on more efficient robust optoelectronic applications. This dissertation focuses on the study and examination of the practicality of Electrophoretic Deposition (EPD) of zinc oxide (ZnO) nanoparticles (NPs) for use in semiconductor applications.

The feasibility of several synthesized electrolytes, with and without surfactants and APTES surface functionalization, is discussed. The primary objective of this study …


Observation And Control Of Photoemission And Electric Field Enhancement Of Plasmonic Antennas Through Photoemission Electron Microscopy, Christopher M. Scheffler Jun 2022

Observation And Control Of Photoemission And Electric Field Enhancement Of Plasmonic Antennas Through Photoemission Electron Microscopy, Christopher M. Scheffler

Dissertations and Theses

Photoemission electron microscopy (PEEM) is an imaging method which uses electrons excited through the photoelectric effect to characterize a sample surface with nanometer-level resolution. In PEEM, a high intensity laser excites electrons from the surface of the material and electron optics are used to form an image from the intensity and spatial distribution of the photoemission from the sample. The goal of this research was to study and maximize light confinement, which was accomplished using plasmonic nanostructures. Surface plasmons represent oscillations in the electron density of a material and can occur along the transition interface between a metal and a …


Towards Highly Sensitive Capacitance Measurements Of A Quantum Anomalous Hall Phase In Van Der Waal Heterostructures, Kayla Cerminara May 2022

Towards Highly Sensitive Capacitance Measurements Of A Quantum Anomalous Hall Phase In Van Der Waal Heterostructures, Kayla Cerminara

UNLV Theses, Dissertations, Professional Papers, and Capstones

One of the pioneering achievements in condensed matter physics of the 20th century is the observation of the quantum Hall e↵ect (QHE) in which the Hall resistance in a two-dimensional (2D) sample takes on quantized values in the presence of a strong perpendicular magnetic field. The precise quantization of the hall resistance to one part in a billion has provided a practical, worldwide resistance standard. A long-standing goal has been to realize a similar state of matter but without the need of a strong quantizing magnetic field. The quantum anomalous Hall e↵ect (QAHE) is such a state that is predicted …


Exploring Magneto-Excitons In Bulk And Mono-Layer Semiconductors Using Non-Linear Spectroscopy Techniques, Varun Mapara Mar 2022

Exploring Magneto-Excitons In Bulk And Mono-Layer Semiconductors Using Non-Linear Spectroscopy Techniques, Varun Mapara

USF Tampa Graduate Theses and Dissertations

The research in two-dimensional (2D) materials has evolved from ``traditional" quantum wells based on group III-V and II-VI semiconductors to atomically thin sheets of van der Waals materials such as 2D semiconducting Transition Metal Dichalcogenides (TMDs). These 2D materials remain a stimulating field that continues to introduce new challenges. From both a fundamental physics and technological perspective, magneto-optical spectroscopy has been an essential tool in this research field. TMDs, for example, pose the challenge of characterizing their spin-valley-resolved physics and deriving implications in quantum computation and information research. With the discovery of valley Zeeman effects, the spin-valley physics of TMDs …


Characterization Of Nanoparticles Using Inductively-Coupled Plasma Mass Spectrometry, Jabez D. Campbell Jan 2022

Characterization Of Nanoparticles Using Inductively-Coupled Plasma Mass Spectrometry, Jabez D. Campbell

MSU Graduate Theses

Nanomaterials are a relatively new class of materials that have many applications which span a wide host of fields from medical products to consumer products. The possible compositions and forms of nanomaterials are just as varied as the applications. Therefore, a versatile characterization method is needed for researchers and regulators alike to ensure nanomaterials are properly used. Single Particle Inductively Coupled Plasma Mass Spectrometry (SP-ICP-MS) is a functional method that could fill the characterization need in the nanomaterial research field. Using data from both SP-ICP-MS tests and data from literature established characterization methods, the viability of making SP-ICP-MS the standard …