Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Random Lasing In Nano-Crystalline Zinc-Oxide Films, Benito Reynaldo Resendiz Jan 2022

Random Lasing In Nano-Crystalline Zinc-Oxide Films, Benito Reynaldo Resendiz

Dissertations and Theses

In this thesis, we explore the preparation of random lasers (RLs) using solution-deposited, randomly packed nano-particle films of zinc oxide (ZnO) impregnated with silicon dioxide (SiO2) nanospheres. RLs have their scatterers randomly oriented, while their lasing comes from light propagating along closed paths through the scattering environment. It is shown here that random lasing is readily observed in films made of submicron sized ZnO particles. Adding transparent SiO2 nanospheres to the films, we show there is an effective improvement of the lasing that is observable in all of the samples spectra. Specifically, we found that the lasing …


Reconfigurable Solid-State Dye-Doped Polymer Ring Resonator Lasers, Hengky Chandrahalim, Xudong Fan Jan 2015

Reconfigurable Solid-State Dye-Doped Polymer Ring Resonator Lasers, Hengky Chandrahalim, Xudong Fan

Faculty Publications

This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3′-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G) and 3,3′-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse …