Open Access. Powered by Scholars. Published by Universities.®

Tribology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Tribology

One-Dimensional Lateral Force Anisotropy At The Atomic Scale In Sliding Single Molecules On A Surface, Yuan Zhang, Daniel J. Trainer, Badri Narayanan, Yang Li, Anh T. Ngo, Sushila Khadka, Arnab Neogi, Brandon Fisher, Larry A. Curtiss, Subramanian K.R.S. Sankaranarayanan, Saw Wai Hla Jan 2021

One-Dimensional Lateral Force Anisotropy At The Atomic Scale In Sliding Single Molecules On A Surface, Yuan Zhang, Daniel J. Trainer, Badri Narayanan, Yang Li, Anh T. Ngo, Sushila Khadka, Arnab Neogi, Brandon Fisher, Larry A. Curtiss, Subramanian K.R.S. Sankaranarayanan, Saw Wai Hla

Physics Faculty Publications

Using a q+ atomic force microscopy at low temperature, a sexiphenyl molecule is slid across an atomically flat Ag(111) surface along the direction parallel to its molecular axis and sideways to the axis. Despite identical contact area and underlying surface geometry, the lateral force required to move the molecule in the direction parallel to its molecular axis is found to be about half of that required to move it sideways. The origin of the lateral force anisotropy observed here is traced to the one-dimensional shape of the molecule, which is further confirmed by molecular dynamics simulations. We also demonstrate that …


Identification Of Multiple Oscillation States Of Carbon Nanotube Tipped Cantilevers Interacting With Surfaces In Dynamic Atomic Force Microscopy, Mark Strus, Arvind Raman Jan 2009

Identification Of Multiple Oscillation States Of Carbon Nanotube Tipped Cantilevers Interacting With Surfaces In Dynamic Atomic Force Microscopy, Mark Strus, Arvind Raman

Birck and NCN Publications

Carbon nanotubes (CNTs) have gained increased interest in dynamic atomic force microscopy (dAFM) as sharp, flexible, conducting, nonreactive tips for high-resolution imaging, oxidation lithography, and electrostatic force microscopy. By means of theory and experiments we lay out a map of several distinct tapping mode AFM oscillation states for CNT tipped AFM cantilevers: namely, noncontact attractive regime oscillation, intermittent contact with CNT slipping or pinning, or permanent contact with the CNT in point or line contact with the surface while the cantilever oscillates with large amplitude. Each state represents fundamentally different origins of CNT-surface interactions, CNT tip-substrate dissipation, and phase contrast …