Open Access. Powered by Scholars. Published by Universities.®

Tribology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Tribology

Modeling Residual Stress Development In Hybrid Processing By Additive Manufacturing And Laser Shock Peening, Guru Charan Reddy Madireddy Apr 2018

Modeling Residual Stress Development In Hybrid Processing By Additive Manufacturing And Laser Shock Peening, Guru Charan Reddy Madireddy

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

The term “hybrid” has been widely applied to many areas of manufacturing. Naturally, that term has found a home in additive manufacturing as well. Hybrid additive manufacturing or hybrid-AM has been used to describe multi-material printing, combined machines (e.g., deposition printing and milling machine center), and combined processes (e.g., printing and interlayer laser re-melting). The capabilities afforded by hybrid-AM are rewriting the design rules for materials and adding a new dimension in the design for additive manufacturing paradigm. This work focuses on hybrid-AM processes, which are defined as the use of additive manufacturing (AM) with one …


Modeling And Computation Of The Maximum Braking Energy Speed For Transport Category Airplanes, Nihad E. Daidzic Mar 2017

Modeling And Computation Of The Maximum Braking Energy Speed For Transport Category Airplanes, Nihad E. Daidzic

Journal of Aviation Technology and Engineering

Transport-category or FAR/CS 25 certified airplanes may occasionally become braking energy capacity limited. Such limitation may exist when heavy airplanes are departing airports at high-density altitudes, on relatively long runways, and/or possibly with some tailwind component. A maximum braking energy VMBE speed exists which may limit the maximum allowable takeoff decision/action speed V1. The ever-existing possibility of high-speed rejected takeoff in such conditions may also limit the airplane gross weight for declared available distances. To gain deeper insights and acquire better understanding of the topic, a theoretical model of the maximum braking energy and the related VMBE speed for T-category …


Characterization Of Nano-Porous Si-Cu Composites To Enhance Lubricant Retention Impacting The Tribological Properties Of Sliding Surfaces, Julius Sheldon Morehead May 2015

Characterization Of Nano-Porous Si-Cu Composites To Enhance Lubricant Retention Impacting The Tribological Properties Of Sliding Surfaces, Julius Sheldon Morehead

Graduate Theses and Dissertations

As the expectations for modern machinery's tribological and thermal performances continue to rise, the retention of lubricant on the contact surfaces of their sliding components becomes an increasingly important issue. Friction and wear cause heat-related failures which lead to catastrophic damage to machinery. Evaporation of a lubricant's volatile constituents as well as lubricant migration leads not only to a reduction in lubricant quantity but also in its quality, thus facilitating component failures. In order to enhance component reliability, the surface should incorporate features that actively retain lubricants. The unique properties of nano-porous topographies such as their high surface area-to-volume ratio …


Electrohydrodynamic Enhancement Of Heat Transfer And Mass Transport In Gaseous Media, Bulk Dielectric Liquids And Dielectric Thin Liquid Films, Seyed Reza Mahmoudi May 2012

Electrohydrodynamic Enhancement Of Heat Transfer And Mass Transport In Gaseous Media, Bulk Dielectric Liquids And Dielectric Thin Liquid Films, Seyed Reza Mahmoudi

Electronic Thesis and Dissertation Repository

Controlling transport phenomena in liquid and gaseous media through electrostatic forces has brought new important scientific and industrial applications. Although numerous EHD applications have been explored and extensively studied so far, the fast-growing technologies, mainly in the semiconductor industry, introduce new challenges and demands. These challenges require enhancement of heat transfer and mass transport in small scales (sometimes in molecular scales) to remove highly concentrated heat fluxes from reduced size devices. Electric field induced flows, or electrohydrodynamics (EHD), have shown promise in both macro and micro-scale devices.

Several existing problems in EHD heat transfer enhancements were investigated in this thesis. …


Rayleigh Test Apparatus Design Report, Josef Duller, Owen Raybould, James Nicovich Jun 2011

Rayleigh Test Apparatus Design Report, Josef Duller, Owen Raybould, James Nicovich

Mechanical Engineering

The Rayleigh Test Apparatus is a device that will be used to test the thermodynamic properties of Nitrous Oxide to assess the feasibility of using this fluid as a coolant for a hybrid rocket aero spike. The aero spike is intended to redirect the propulsion flow as it leaves the engine to create a more efficient flow pattern at low and high altitudes. However, there are issues of overheating which leads to melting of the aero spike. For this reason, the use of nitrous oxide (N2O) as a coolant is being explored. N20 is being considered because it is already …


Manufacturing Self-Assembled Coatings Of Micro- And Nano-Particles By Controlled Evaporation Of Drops And Thin Films, Junfeng Xiao, Rajneesh Bhardwaj, Daniel Attinger Apr 2011

Manufacturing Self-Assembled Coatings Of Micro- And Nano-Particles By Controlled Evaporation Of Drops And Thin Films, Junfeng Xiao, Rajneesh Bhardwaj, Daniel Attinger

Daniel Attinger

The engineered deposition of self-assembled coatings of micro- and nano-particles on solid surfaces has applications in photonic crystals, optoelectronic devices, sensors, waveguides and antireflective coatings. Besides lithographic, etching or vapor deposition methods, these coatings can be self-assembled on small (