Open Access. Powered by Scholars. Published by Universities.®

Manufacturing Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Theses/Dissertations

Discipline
Institution
Keyword
Publication
File Type

Articles 1 - 30 of 105

Full-Text Articles in Manufacturing

Enhanced Heat Transfer Performance By Shape Optimization Of A Non-Axisymmetric Droplet Evaporating On A Heated Micropillar, Haotian Wu Dec 2019

Enhanced Heat Transfer Performance By Shape Optimization Of A Non-Axisymmetric Droplet Evaporating On A Heated Micropillar, Haotian Wu

McKelvey School of Engineering Theses & Dissertations

Abstract

Enhanced Heat Transfer Performance by Shape Optimization of a Non-axisymmetric Droplet Evaporating on a Heated Micropillar

By

Haotian Wu

Department of Mechanical Engineering and Materials Science

Washington University in St. Louis, 2019

Research Advisor: Professor Damena Agonafer

The stacked multilayer 3D IC structure used in next generation high-powered electronics poses great challenges in dissipating their large heat flux, which causes extreme difficulties for traditional cooling technologies. In response, more advanced two-phase liquid cooling technologies, such as droplet evaporation, which utilizes the latent heat of vaporization to remove excessive heat, have been widely investigated. Compared to traditional single-phase cooling techniques, …


Fiberglass Mat-Roll Carryover, Bryce Youngson, Aaliyah Ramos, Johann Cayaban, Tony Ledesma Dec 2019

Fiberglass Mat-Roll Carryover, Bryce Youngson, Aaliyah Ramos, Johann Cayaban, Tony Ledesma

Mechanical Engineering

The asphalt shingle is a type of roof shingle that uses asphalt for waterproofing. Its low cost and easy installation make it one of the most common roof covers in North America. General Aniline and Film (GAF) is one of the nation’s largest manufacturers of roofing materials and produces asphalt shingles at their Shafter, California manufacturing facility. To manufacture asphalt shingles, a base material of fiberglass passes through a series of processes that sequentially add asphalt, ceramic-coated mineral granules, and thermoplastic adhesive. The fiberglass base-material arrives at the manufacturing facility in large rolls that workers must periodically splice together in …


Critical Radius Of Insulation, Maria N. Ambrose, Samuel J. Sayre, Travis W. Martin, Matt T. Sterling Dec 2019

Critical Radius Of Insulation, Maria N. Ambrose, Samuel J. Sayre, Travis W. Martin, Matt T. Sterling

Mechanical Engineering

The critical radius of insulation is a counterintuitive concept within the study of heat transfer. The theory states that adding insulation to a cylindrical or spherical object will increase the rate of heat loss rather than decrease it, if the radius (thickness) of the insulation is at its “critical” value. The Critical Radius of Insulation Senior Project is designed to demonstrate this phenomenon to Heat Transfer students via a portable apparatus. The concept will be demonstrated with a cylindrical object which is heated by way of a separate voltage source. Thermocouples will display the temperature of the cylinder while insulation …


Process Improvement And Lift Design For The Installation Of A Metrology Machine Assembly, Dalt J. Lasell, James Mitchell O'Meara, Matthew Steensma Dec 2019

Process Improvement And Lift Design For The Installation Of A Metrology Machine Assembly, Dalt J. Lasell, James Mitchell O'Meara, Matthew Steensma

Industrial and Manufacturing Engineering

The objective is to work with Onto Innovations, a leading provider of semiconductor metrology and manufacturing solutions, to develop a system that safely installs a 250lb optics plate into the Atlas III: one of their metrology machines. Based in Milpitas, CA, Onto Innovations utilizes a variety of operations to create different products and assembles each product on site. The 250lb optics plates are WIP that are transferred between fixtures and the Atlas III using a combination of lifts and human workers. The WIP have long lead times, high tolerances, and large costs associated with their manufacturing process.

Onto Innovations identified …


Automation Of Data Analysis In Formula 1, Adam Joseph Mourad, Prescott Jeanne Delzell, Patrick Conner Mccabe Dec 2019

Automation Of Data Analysis In Formula 1, Adam Joseph Mourad, Prescott Jeanne Delzell, Patrick Conner Mccabe

Industrial and Manufacturing Engineering

This paper explores economic solutions for Formula 1 racing companies who are interested in data visualization tools. The research was conducted on the current development of data gathering, data visualization, and data interpretation in Formula 1 racing. It was found that a large chunk of racing companies within the league needs an affordable, effective, and automated visualization tool for data interpretation. As data collection in Formula 1 arises, the need for faster and more powerful software increases. Racing companies profit off-brand exposure and the more a racing team wins, the more exposure they receive. The goal of the paper focuses …


Katie's Jogger, Megan Guillermo, Erin Wint, Abdullah Sulaiman, Kathryn Mangiaracina Dec 2019

Katie's Jogger, Megan Guillermo, Erin Wint, Abdullah Sulaiman, Kathryn Mangiaracina

Mechanical Engineering

Edward Robinson is an avid runner who would like to take his daughter on runs. His daughter, Katie, is 100% wheelchair bound and currently does not fit in any commercial joggers on the market. The project team was expected to design, build, and test a custom working prototype of a jogger that the sponsor can use to take his daughter on runs. This entire project was performed over a span of three quarters.


Mad Jack Alpine Touring Model Design, Austin Gasbarra, Gillian Stargensky, Madeleine Mccool, Brannon Smudz Dec 2019

Mad Jack Alpine Touring Model Design, Austin Gasbarra, Gillian Stargensky, Madeleine Mccool, Brannon Smudz

Mechanical Engineering

Skiing is a sport enjoyed by millions of people every year, yet ski boots are very uncomfortable and cost- prohibitive, resulting in a low conversion rate of first-time skiers to lifetime skiers. Additionally, Alpine Touring (AT) is seeing a surge in popularity as ski resorts become more expensive, but few companies are developing affordable products in this realm. Mad Jack Snow Sports has developed a product that they believe addresses some of the main issues associated with skiing, but they want to develop their product line further. The problem statement and scope state that the purpose of this project is …


Design And Testing Of A Modular Laser System With Laser Machining And Bioprinting Capabilities, Jesus Gonzalez Dec 2019

Design And Testing Of A Modular Laser System With Laser Machining And Bioprinting Capabilities, Jesus Gonzalez

Theses and Dissertations

This thesis introduces the applications of ultrafast lasers while focusing on their bioprinting capabilities. A custom system was designed to utilize a femtosecond laser for 2D and 3D applications. The characteristics of lasers allow them to be efficiently used in machining, 3D printing, research, and more. Their power and precision allow them to be used for delicate work such as bioprinting. Bioprinting is a field holding great potential to benefit society. Studies conducted over the years prove its usefulness in printing cells and biomaterials, while showing there is still much to improve upon before being able to print fully functioning …


Evaluation Of The Most Significant Factors Influencing The Production Rates Of Highway Construction Activities, Angelica M. Neira Dec 2019

Evaluation Of The Most Significant Factors Influencing The Production Rates Of Highway Construction Activities, Angelica M. Neira

Theses and Dissertations

The utilization of realistic production rates is key for the accurate estimation of the contract time in highway projects. Several factors have an impact on production rates and change the total duration of construction projects. To organize and complete projects in a timely, quality and financially responsible manner, projects need to be scheduled carefully. Schedulers and planners of the Texas Department of Transportation (TxDOT) have been noticing that the estimated timelines are far from the reality and want to investigate if external factors can be the cause of this discrepancy. Some of the factors considered in this study are the …


Exploring Convergence Of Snake Skin-Inspired Texture Designs And Additive Manufacturing For Mechanical Traction, Catherine Sue Tiner Dec 2019

Exploring Convergence Of Snake Skin-Inspired Texture Designs And Additive Manufacturing For Mechanical Traction, Catherine Sue Tiner

Graduate Theses and Dissertations

This research focuses on the understanding, development, and additive manufacture of a 3D printed snake skin-inspired texture pattern. The design functionalities of snake skin were determined through the study of the snake species Python Regius otherwise known as the ball python. Each scale of a snake has hierarchical texture with hexagonal macro-patterns aligned on the ventral surface of the skin with overriding anisotropic micro textured patterns such as denticulations and fibrils. Using a laser-powder bed fusion (L-PBF) process, 420 stainless steel samples were 3D printed which closely resemble the above described directional texture of natural snake skin. This printed surface …


The High Rise Storage System, Justin H. Harmon Dec 2019

The High Rise Storage System, Justin H. Harmon

Chancellor’s Honors Program Projects

No abstract provided.


An Investigation Of High-Speed Consolidation And Repair Of Carbon Fiber - Epoxy Composites Through Ultrasonic Welding, David A. Hoskins Nov 2019

An Investigation Of High-Speed Consolidation And Repair Of Carbon Fiber - Epoxy Composites Through Ultrasonic Welding, David A. Hoskins

LSU Master's Theses

Adhesive repair of carbon fiber composite structures is commonly done on damaged structures to extend the service life. This method requires careful preparation of the damaged surface with intricate steps to ensure good bonding between the repair patch and the parent structure by means of an adhesive film. As with many forms of composite manufacturing, it is required to perform vacuum bagging, debulking, and a heated cure depending on the resin. All these steps make the repair process costly and time consuming.

In this present work, an alternative method of repair is investigated which explores the experimental feasibility of using …


Three Essays On Data-Driven Optimization For Scheduling In Manufacturing And Healthcare, Ekin Koker Oct 2019

Three Essays On Data-Driven Optimization For Scheduling In Manufacturing And Healthcare, Ekin Koker

Doctoral Dissertations

This dissertation consists of three essays on data-driven optimization for scheduling in manufacturing and healthcare. In Chapter 1, we briefly introduce the optimization problems tackled in these essays. The first of these essays deals with machine scheduling problems. In Chapter 2, we compare the effectiveness of direct positional variables against relative positional variables computationally in a variety of machine scheduling problems and we present our results. The second essay deals with a scheduling problem in healthcare: the team primary care practice. In Chapter 3, we build upon the two-stage stochastic integer programming model introduced by Alvarez Oh (2015) to solve …


Development Of A Robotized Laser Directed Energy Deposition System And Process Challenges, Meysam Akbari Oct 2019

Development Of A Robotized Laser Directed Energy Deposition System And Process Challenges, Meysam Akbari

Mechanical Engineering Research Theses and Dissertations

Metal additive manufacturing (AM) is a disruptive technology, enabling fabrication of complex and near net shaped parts by adding material in a layer-wise fashion. It offers reduced lead production time, decreased buy-to-fly ratio, and repair and remanufacturing of high value components. AM processes are finding applications in many industrial sectors such as aerospace, automotive, biomedical and mold tooling. However, beside tremendous advantages of AM, there are still some challenges that prevent the adoption of this technology into high standard applications. Anisotropy and inhomogeneity in mechanical properties of the as-built parts and existence of pores and lack-of-fusion defects are considered as …


Development Of Experimental And Finite Element Models To Show Size Effects In The Forming Of Thin Sheet Metals, Jeffrey D. Morris Aug 2019

Development Of Experimental And Finite Element Models To Show Size Effects In The Forming Of Thin Sheet Metals, Jeffrey D. Morris

University of New Orleans Theses and Dissertations

Abstract

An experimental method was developed that demonstrated the size effects in forming thin sheet metals, and a finite element model was developed to predict the effects demonstrated by the experiment. A universal testing machine (UTM) was used to form aluminum and copper of varying thicknesses (less than 1mm) into a hemispherical dome. A stereolithography additive manufacturing technology was used to fabricate the punch and die from a UV curing resin. There was agreement between the experimental and numerical models. The results showed that geometric size effects were significant for both materials, and these effects increased as the thickness of …


Baja Sae Ecvt Mechanical Design, Tyler Lee Connel, Will Daniel Antes, Matt Stephen Balboni, Benjamin James Colard, Julian Edward Finburgh Aug 2019

Baja Sae Ecvt Mechanical Design, Tyler Lee Connel, Will Daniel Antes, Matt Stephen Balboni, Benjamin James Colard, Julian Edward Finburgh

Mechanical Engineering

This objective of this project was to design, manufacture, and test the mechanical systems of an electronically-controlled continuously variable transmission (eCVT) for the Cal Poly Baja SAE vehicle.


Parametric Study Of Selective Laser Alloying Of Elemental Titanium And Boron Powders Using An Automated Deposition Mechanism, Julian V. Gonzalez Aug 2019

Parametric Study Of Selective Laser Alloying Of Elemental Titanium And Boron Powders Using An Automated Deposition Mechanism, Julian V. Gonzalez

Theses and Dissertations

An automatic powder deposition and leveling mechanism was designed and constructed to assist in surface roughness experiments for titanium-boron samples. Previously developed energy models and x-ray diffraction analysis was used to confirm the creation of titanium diboride samples. To study TiB2 at different energy values, a 52 (2 factors, 5 levels) factorial design was used and carried out under an argon atmosphere, through the AM250 laser melting system. Two experimental runs were carried out and a total of 50 samples were assigned a surface roughness measurement through the Dektak XT profilometer. Graphically and with statistical analysis, the data was determined …


A Study Of Human Balance And Coordination Using A Head Mounted Display, Daniel Gracia De Luna Aug 2019

A Study Of Human Balance And Coordination Using A Head Mounted Display, Daniel Gracia De Luna

Theses and Dissertations

Virtual Reality (VR) is growing with new technologies and applications. The new technologies help the user to feel more immersed in virtual environments, but interaction and immersion is an area that has not been well studied. Immersion is the feeling and reaction of users while they are in a virtual environment. This investigation is focused on the study of the human balance and coordination when human subjects are inside a virtual environment. Over 60 subjects are studied under an experiment, where their trajectory is captured and analyzed to identify possible differences or similitudes between male and female subjects.


System Integration Of C-Arm Robotic Prototype Using Motion Capture Guidance For Accurate Repositioning, Alireza Yazdanshenas Jul 2019

System Integration Of C-Arm Robotic Prototype Using Motion Capture Guidance For Accurate Repositioning, Alireza Yazdanshenas

Mechanical Engineering Theses

One of the important surgical tools in spinal surgery is the C-Arm X-ray System. The C-Arm is a large “C” shaped and manually maneuvered arm that provides surgeons and X-ray technicians the ability to take quick quality X-rays during surgery. Because of its five degrees of freedom, the C-Arm can be manually maneuvered around the patient to provide many angles and perspectives, ensuring surgical success.

This system works fine for most surgical procedures but falls short when the C-Arm must be moved out of the way for complicated surgical procedures.

The aim of this thesis is to develop an accurate …


Human Powered Vehicle Trainer, Nicholas Hung Nguyen, Gregory Reece Bridges, Jacinta Garcia, Mitchell Sidney Smith Jun 2019

Human Powered Vehicle Trainer, Nicholas Hung Nguyen, Gregory Reece Bridges, Jacinta Garcia, Mitchell Sidney Smith

Mechanical Engineering

This Final Design Review (FDR) document describes the final design and completed prototype of a Mechanical Engineering senior project team at California Polytechnic State University, San Luis Obispo. The project goal is to create an adjustable human powered vehicle training bike for George Leone that allows a rider to gain confidence with the unique reclined bike geometry ahead of the World Human Powered Speed Challenge at Battle Mountain, Nevada. This document outlines the customer’s needs and technical research performed which together determine the project’s scope and engineering specifications. Next, we present the initial idea generation process and its results, along …


Cisco Nexus 9200 Robustness Redesign, Colin Berge, Ethan Gold, Cole Christopherson, Rahul Makhijani Jun 2019

Cisco Nexus 9200 Robustness Redesign, Colin Berge, Ethan Gold, Cole Christopherson, Rahul Makhijani

Industrial and Manufacturing Engineering

Certain configurations of Cisco's Nexus 9200 product experienced issues with bending during shipping. Two solutions were developed to eliminate this problem: an external brace that could quickly address the problem yet was expensive and unsustainable, and a redesigned chassis, which was more economical but came with a longer time to implement. Real world packaging and shipping conditions were simulated in SolidWorks and Finite Element Analysis was used to model the stresses experienced when the product is dropped. Both designs were found to significantly reduce stress in critical areas, thus reducing the chance of failure and the cost of the problem. …


Redesign Of Cubesat For Beam Charging, Kuba Preis Jun 2019

Redesign Of Cubesat For Beam Charging, Kuba Preis

Industrial and Manufacturing Engineering

This paper is intended to be a study in the applications of the design freedom granted by additive manufacture in the design of a 1U CubeSat frame. The main loads experienced by a CubeSat are structural (during launch) and thermal (solar radiation). Beam charging is an emerging technology which involves charging a CubeSat using a laser beam. In this paper, a CubeSat frame was redesigned to account for the structural loads induced during launch and the thermal loads induced when beam charging. The thermal, weight, design, and structural requirements for a new CubeSat design were derived. The 1U CubeSat frame …


Modifying Casting Parameters To Improve The High Temperature Ductility Of Investment Cast Nickel-Based Superalloy Pwa 1455, Lars Alexander Hedin, Cole Magnum Introligator Jun 2019

Modifying Casting Parameters To Improve The High Temperature Ductility Of Investment Cast Nickel-Based Superalloy Pwa 1455, Lars Alexander Hedin, Cole Magnum Introligator

Materials Engineering

PCC Structurals, an industry leader in superalloy investment castings, has observed inconsistencies in the stress rupture performance of polycrystalline nickel-based superalloy PWA 1455. PCC has changed their casting parameters to reduce the thermal gradient during cooling but have been unable to correlate these changes with an increase in stress rupture elongation. Metallographic examination of past samples indicated microstructures composed of non- equiaxed dendritic grains with mean diameter of .021 inches along the test axis. A similar study on polycrystalline superalloys has indicated that excessive superheat temperatures above the liquidus can result in large grains identical to those observed, limiting the …


Fluid Power Vehicle Challenge - The Incompressibles - Final Design Report, Nicholas Gholdoian, Russell Posin, David Vitt, Alex Knickerbocker, Kyle Franck, Julian Rodkiewicz Jun 2019

Fluid Power Vehicle Challenge - The Incompressibles - Final Design Report, Nicholas Gholdoian, Russell Posin, David Vitt, Alex Knickerbocker, Kyle Franck, Julian Rodkiewicz

Mechanical Engineering

This report provides a comprehensive description of the research, analysis and design work that The Incompressibles have completed thus far in the senior project process. This document includes all the work that The Incompressibles have completed for the team’s Preliminary Design Review (PDR), Critical Design Review (CDR), the work leading up to the 2019 FPVC competiton and the competition results. This report includes the initial research that the team completed for the fluid power competition, first iterations of designs, final iterations of designs, manufacturing results and processes, and finally testing and results from competition. With a new design for the …


C6 Wheels, Samuel L. Pizot, Luke Martin, Josh Warner, Jonah Levis Jun 2019

C6 Wheels, Samuel L. Pizot, Luke Martin, Josh Warner, Jonah Levis

Mechanical Engineering

This document details the C6 Wheels project being undertaken for senior design. The objective is to design and manufacture carbon fiber reinforced polymer wheels for the Cal Poly Formula Society of Automotive Engineers (FSAE) team. The wheel shells will be used on FSAE’s competition vehicles. FSAE requested the wheels to improve the handling characteristics of their vehicles by reducing the unsprung and rotational mass. They have attempted carbon fiber wheels previously but have not yet run any on their vehicles. FSAE specifically proposed the design of carbon fiber shells with an aluminum center as opposed to full carbon fiber wheels …


Adapted Trailer Hitching System, Joseph Neil Hearn, Maxwell M. Selna, Maximilian D. Cossalter, Eric B. Ringsrud Jun 2019

Adapted Trailer Hitching System, Joseph Neil Hearn, Maxwell M. Selna, Maximilian D. Cossalter, Eric B. Ringsrud

Mechanical Engineering

This report highlights the entire design process of an adapted trailer hitching system for Taylor Morris: a navy veteran and quadruple amputee. This begins with problem definition through customer and product research. Objectives are generated after the problem is defined and the boundary of the project is set. This outcome of the project focuses on modifications/improvements to the vehicle side of the problem and leaves the trailers untouched. Engineering specifications are developed to constrain the concept design direction, which ultimately dictates the outcome of the final design. The final design is used as a basis to manufacture a structural prototype …


Insulated Solar Electric Cooker Immersion Heater, Emily Burnside, Kaeley Dicks, Joshua R. Stevens, Brady Banks Jun 2019

Insulated Solar Electric Cooker Immersion Heater, Emily Burnside, Kaeley Dicks, Joshua R. Stevens, Brady Banks

Mechanical Engineering

This report is the final design review (FDR) report for our team completing the Insulated Solar Electric Cooker (ISEC) Immersion Heater mechanical engineering senior project. The goal of this project is to standardize and perform analysis on a preexisting, inexpensive solar-powered immersion heater for cooking use in developing countries, reducing the adverse effects presented by traditional biomass cooking fires. We also designed a manufacturing process to improve repeatability and to reduce labor investment of heater production. The ISEC research team from the California Polytechnic State University Physics Department have been working on the development of this immersion heater and have …


Sand Foot: A Prosthesis For Walking On Sand, Samantha A. Galicinao, John Dewing, Daniel Dugan Dotson, Christopher Urasaki Jun 2019

Sand Foot: A Prosthesis For Walking On Sand, Samantha A. Galicinao, John Dewing, Daniel Dugan Dotson, Christopher Urasaki

Biomedical Engineering

This critical design report describes the product development of a prosthesis for use on sand. Quality of Life Plus (QL+), a national non-profit organization aimed to develop prostheses for veterans and people with disabilities, introduced this project and its accompanying challenger, Sgt. Brady, to Cal Poly’s Interdisciplinary Senior Project class in September 2018. After consulting with Sgt. Brady and QL+ and performing extensive research, the Sand Foot team defined customer requirements and engineering specifications to meet these requirements. Comfortability, durability, and sandproof were key customer requirements. Several conceptual models were brainstormed and a final design was selected based on the …


Design Of Natural Composite I-Beam For Sampe 2019, Brian Harkness Jun 2019

Design Of Natural Composite I-Beam For Sampe 2019, Brian Harkness

Honors Theses

In recent years, the demand for high performance, lightweight, fiber-reinforced composites have grown substantially. Fiberglass and carbon fiber have exemplary material properties that meet the demand and have set the industry standard for performance materials. Although these materials meet their design function, they suffer from high environmental impacts throughout their life cycle and are not cost effective to produce. Flax fiber composites have comparable properties to fiberglass but can be produced more efficiently and production requires much less energy consumption. Flax is a readily available, renewable material that will easily biodegrade once it is the end of its useful life …


Thermoplastic Composite Heat Recovery Ventilator, Keegan Guinn Jun 2019

Thermoplastic Composite Heat Recovery Ventilator, Keegan Guinn

Honors Theses

Heat recovery ventilation continues to increase in importance as building codes mandate reduced air infiltration and increased energy efficiency. Heat recovery ventilators are able to reduce building heating and cooling loads by transferring heat between the exiting air and incoming ventilation air. In the role of heat recovery ventilation, additively manufactured polymer composite heat recovery ventilators offer significant advantages over traditionally manufactured metallic alloy heat recovery ventilators. Through the implementation of additive manufacturing, the internal geometry of the heat recovery ventilator can be optimized to decrease the head loss across the system and features to improve heat transfer such as …