Open Access. Powered by Scholars. Published by Universities.®

Manufacturing Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Manufacturing

An Investigation Of High-Speed Consolidation And Repair Of Carbon Fiber - Epoxy Composites Through Ultrasonic Welding, David A. Hoskins Nov 2019

An Investigation Of High-Speed Consolidation And Repair Of Carbon Fiber - Epoxy Composites Through Ultrasonic Welding, David A. Hoskins

LSU Master's Theses

Adhesive repair of carbon fiber composite structures is commonly done on damaged structures to extend the service life. This method requires careful preparation of the damaged surface with intricate steps to ensure good bonding between the repair patch and the parent structure by means of an adhesive film. As with many forms of composite manufacturing, it is required to perform vacuum bagging, debulking, and a heated cure depending on the resin. All these steps make the repair process costly and time consuming.

In this present work, an alternative method of repair is investigated which explores the experimental feasibility of using …


Development Of Experimental And Finite Element Models To Show Size Effects In The Forming Of Thin Sheet Metals, Jeffrey D. Morris Aug 2019

Development Of Experimental And Finite Element Models To Show Size Effects In The Forming Of Thin Sheet Metals, Jeffrey D. Morris

University of New Orleans Theses and Dissertations

Abstract

An experimental method was developed that demonstrated the size effects in forming thin sheet metals, and a finite element model was developed to predict the effects demonstrated by the experiment. A universal testing machine (UTM) was used to form aluminum and copper of varying thicknesses (less than 1mm) into a hemispherical dome. A stereolithography additive manufacturing technology was used to fabricate the punch and die from a UV curing resin. There was agreement between the experimental and numerical models. The results showed that geometric size effects were significant for both materials, and these effects increased as the thickness of …


Design Of Natural Composite I-Beam For Sampe 2019, Brian Harkness Jun 2019

Design Of Natural Composite I-Beam For Sampe 2019, Brian Harkness

Honors Theses

In recent years, the demand for high performance, lightweight, fiber-reinforced composites have grown substantially. Fiberglass and carbon fiber have exemplary material properties that meet the demand and have set the industry standard for performance materials. Although these materials meet their design function, they suffer from high environmental impacts throughout their life cycle and are not cost effective to produce. Flax fiber composites have comparable properties to fiberglass but can be produced more efficiently and production requires much less energy consumption. Flax is a readily available, renewable material that will easily biodegrade once it is the end of its useful life …


Design And Control Of Fiber Encapsulation Additive Manufacturing, Matt Saari May 2019

Design And Control Of Fiber Encapsulation Additive Manufacturing, Matt Saari

Mechanical Engineering Research Theses and Dissertations

This work presents the design, development, and analysis of the Fiber Encapsulation Additive Manufacturing (FEAM) system developed at the Laboratory for Additive Manufacturing Robotics \& Automation at the Lyle School of Engineering at Southern Methodist University. The innovation introduced by FEAM is the ability to insert a continuous fiber of different material into the flowing extrudate. Correctly positioning the fiber feed inside the extrudate while turning the fiber in arbitrary directions is a critical aspect of the technology. This will allow for the full exploitation of the capabilities of the FEAM technology to produce robotic components that actuate and sense. …


Development Of A Multi-Probe Kelvin Scanner Device For Industrially-Relevant Characterization Of Surface-Activated Carbon Fiber Reinforced Thermoplastic Composites, Kirby Simon May 2019

Development Of A Multi-Probe Kelvin Scanner Device For Industrially-Relevant Characterization Of Surface-Activated Carbon Fiber Reinforced Thermoplastic Composites, Kirby Simon

McKelvey School of Engineering Theses & Dissertations

Carbon fiber reinforced thermoplastic (CFRTP) composites are becoming increasingly attractive materials in manufacturing due to their lightweight nature, mechanical strength, and corrosion resistance. Surface activation of these materials is usually required during processing to increase the bond strength of assemblies (aerospace and automotive industries) or improve adhesion with implants (biomedical industry). Industrially-relevant, nondestructive quality control methods for assessing the activation state of these materials do not currently exist, however. Applying principles discovered through the use of scanning probe microscopy, a multiple-probe Kelvin scanning (MPKS) device has been developed that can assess the uniformity of the activation state of plasma-treated CFRTP …


Design And Process Of 3d-Printed Parts Using Composite Theory, Jordan Garcia Jan 2019

Design And Process Of 3d-Printed Parts Using Composite Theory, Jordan Garcia

Theses and Dissertations--Mechanical Engineering

3D printing is a revolutionary manufacturing method that allows the productions of engineering parts almost directly from modeling software on a computer. With 3D printing technology, future manufacturing could become vastly efficient. However, it is observed that the procedures used in 3D printing differ substantially among the printers and from those used in conventional manufacturing. In this thesis, the mechanical properties of engineering products fabricated by 3D printing were comprehensively evaluated and then compared with those made by conventional manufacturing. Three open-source 3D printers, i.e., the Flash Forge Dreamer, the Tevo Tornado, and the Prusa, were used to fabricate the …