Open Access. Powered by Scholars. Published by Universities.®

Manufacturing Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Manufacturing

Characterization Of Heat-Affected Powder Generated During Selective Laser Melting Of 304l Stainless Steel Powder, Austin T. Sutton, Caitlin S. Kriewall, Ming-Chuan Leu, Joseph William Newkirk Aug 2017

Characterization Of Heat-Affected Powder Generated During Selective Laser Melting Of 304l Stainless Steel Powder, Austin T. Sutton, Caitlin S. Kriewall, Ming-Chuan Leu, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The selective laser melting (SLM) process is an Additive Manufacturing (AM) technique that uses a laser to fuse successive layers of powder into near fully dense components. Due to the large energy input from the laser during processing, vaporization and instabilities in the melt pool occur causing the formation of condensate and laser spatter, collectively known as heat-affected powder. Since heat-affected powder settles into the powder bed, the properties of the unconsolidated powder may be altered compromising its reusability. In this study, characterization of 304L heat-affected powder was performed through particle size distribution measurements, x-ray diffraction, metallography, energy-dispersive spectroscopy mapping, …


Influence Of Gage Length On Miniature Tensile Characterization Of Powder Bed Fabricated 304l Stainless Steel, Sreekar Karnati, Jack L. Hoerchler, Frank W. Liou, Joseph William Newkirk Aug 2017

Influence Of Gage Length On Miniature Tensile Characterization Of Powder Bed Fabricated 304l Stainless Steel, Sreekar Karnati, Jack L. Hoerchler, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Miniature tensile specimens with varying aspect ratios were fabricated from 304L stainless steel (SS) made using powder bed additive manufacturing (AM) process. The tensile characteristics measured from these specimens were analyzed to assess the impact of gage length. The study found no impact upon varying gage length on yield and ultimate strength measurements. However, a significant impact was observed on strain measurements. This data was also used to perform Weibull statistics to estimate the stochastic performance of the material. Fractography was performed to visually identify the types of flaws. A comparative study with specimens fabricated from cold rolled annealed 304 …


Effect Of Powder Particle Size On The Fabrication Of Ti-6al-4v Using Laser Metal Deposition From Elemental Powder Mixture, Xueyang Chen, Lei Yan, Wei Li, Frank W. Liou, Joseph William Newkirk Aug 2016

Effect Of Powder Particle Size On The Fabrication Of Ti-6al-4v Using Laser Metal Deposition From Elemental Powder Mixture, Xueyang Chen, Lei Yan, Wei Li, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Direct Laser Metal Deposition (LMD) was used to fabricate thin-wall Ti-6Al-4V using the powder mixture of Ti-6 wt.%Al-4 wt.%V. Scanning electron microscopy (SEM), optical microscopy (OM) and energy dispersive spectroscopy (EDS) were employed to examine the chemical composition and microstructure of the as-deposited sections. Vickers hardness tests were then applied to characterize the mechanical properties of the deposit samples which were fabricated using pre-mixed elemental powders. The EDS line scans indicated that the chemical composition of the samples was homogenous across the deposit. X-ray diffraction (XRD) was used for the phase identification. After significant analysis, some differences were observed among …


Modeling And Experimental Investigation Of Pre-Mixed Multi-Powder Flow In Fabricating Functional Gradient Material By Laser Metal Deposition Process, Wei Li, Jingwei Zhang, Sreekar Karnati, Yunlu Zhang, Frank W. Liou, Joseph William Newkirk, Karen M. Brown Taminger, W. L. Seufzer Aug 2016

Modeling And Experimental Investigation Of Pre-Mixed Multi-Powder Flow In Fabricating Functional Gradient Material By Laser Metal Deposition Process, Wei Li, Jingwei Zhang, Sreekar Karnati, Yunlu Zhang, Frank W. Liou, Joseph William Newkirk, Karen M. Brown Taminger, W. L. Seufzer

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Laser Metal Deposition (LMD) is an effective process to fabricate Functionally Graded Material (FGM) from pre-mixed powders. Since the supplied multi-powder directly affects the deposited FGM’s composition, investigation on Pre-Mixed Multi-Powder (PMMP) flow during LMD is greatly needed. This paper presents a comprehensive numerical PMMP flow model. By solving discrete particle force balance equations coupled with continuity equations and momentum equations for carrier gas, the dynamic behavior of PMMP flow through powder feeder tube and out of nozzle was calculated. With this model, the particle sizes of multi-powder were optimized to obtain considered FGM composition. To verify the modeling results, …


Proposed Hybrid Processes For Part Building Using Fusion Welding And Friction Stir Processing, Megan A. Gegesky, Frank W. Liou, Joseph William Newkirk Aug 2016

Proposed Hybrid Processes For Part Building Using Fusion Welding And Friction Stir Processing, Megan A. Gegesky, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

It has been shown that a hybrid laser additive manufacturing and friction stir processing can deposit components with forged-like structures. This paper reports a hybrid fusion welding and friction stir process to create parts with quality structures. Combining traditional fusion welding and friction stir processing techniques for non-weldable aluminum alloys could facilitate the joining of difficult geometries in manufactured parts. This research illustrates mechanical property changes for non-weldable and weldable aluminum alloys. The Vickers hardness, and microhardness in the case of AA5052-H32, tensile strength and corrosion resistance of four processing states: base material, fusion welded material, friction stir welded material, …


Laser Metal Deposition Of Functionally Gradient Materials From Elemental Copper And Nickel Powders, Sreekar Karnati, Todd E. Sparks, Frank W. Liou, Joseph William Newkirk, Karen M. Brown Taminger, William J. Seufzer Aug 2015

Laser Metal Deposition Of Functionally Gradient Materials From Elemental Copper And Nickel Powders, Sreekar Karnati, Todd E. Sparks, Frank W. Liou, Joseph William Newkirk, Karen M. Brown Taminger, William J. Seufzer

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This work deals with the planning and fabrication of a functionally gradient copper-nickel composition via Laser Metal Deposition (LMD). Various compositions of copper and nickel were made by blending different weight percentages which were then sequentially deposited to fabricate functionally gradient copper-nickel thin-wall structures. Analyses were performed by sectioning the thin-wall samples for metallographic, hardness, X-ray diffraction (XRD) and Energy Dispersive X-ray Spectroscopy (EDS) studies. The fabrication was studied for identifying and corroborating the deposited compositions and their corresponding gradients. XRD analyses were performed to identify the crystal structure of the deposit. EDS analysis was instrumental in identifying the variation …


Probabilistic Simulation Of Solidification Microstructure Evolution During Laser-Based Metal Deposition, Jingwei Zhang, Frank W. Liou, William Seufzer, Joseph William Newkirk, Zhiqiang Fan, Heng Liu, Todd E. Sparks Aug 2013

Probabilistic Simulation Of Solidification Microstructure Evolution During Laser-Based Metal Deposition, Jingwei Zhang, Frank W. Liou, William Seufzer, Joseph William Newkirk, Zhiqiang Fan, Heng Liu, Todd E. Sparks

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A predictive model, based on a Cellular Automaton (CA) - Finite Element (FE) method, has been developed to simulate microstructure evolution during metal solidification for a laser based additive manufacturing process. The macroscopic FE calculation was designed to update the temperature field and simulate a high cooling rate. In the microscopic CA model, heterogeneous nucleation sites, preferential growth orientation and dendritic grain growth kinetics were simulated. The CA model was able to show the entrapment of neighboring cells and the relationship between undercooling and the grain growth rate. The model predicted the dendritic grain size, structure, and morphological evolution during …


Increase Of Heat Transfer To Reduce Build Time In Rapid Freeze Prototyping, Ming-Chuan Leu, Sriram Praneeth Isanaka, Von Richards Aug 2009

Increase Of Heat Transfer To Reduce Build Time In Rapid Freeze Prototyping, Ming-Chuan Leu, Sriram Praneeth Isanaka, Von Richards

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Reduction of part build time in the Rapid Freeze Prototyping (RFP) process, which fabricates a 3D ice part layer-by-layer by depositing and freezing water droplets, has been achieved by increase of heat transfer. Three mechanisms have been experimentally investigated: 1) cooling the substrate, 2) use of forced convection, and 3) use of a chilling plate. Cooling the substrate is effective for parts of small heights but becomes ineffective with increase in part height. Forced convection produced desirable reduction in part build time but with the undesirable formation of frost on the built ice part. The use of chilling plate to …


Modeling And Simulation Of A Laser Deposition Process, Frank W. Liou, Zhiqiang Fan, Heng Pan, Kevin P. Slattery, Mary Kinsella, Joseph William Newkirk, Hsin-Nan Chou Aug 2007

Modeling And Simulation Of A Laser Deposition Process, Frank W. Liou, Zhiqiang Fan, Heng Pan, Kevin P. Slattery, Mary Kinsella, Joseph William Newkirk, Hsin-Nan Chou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A laser deposition process involves the supply of metallic powders into a laser-heated spot where the powder is melted and forms a melt puddle which quickly solidifies into a bead. In order to design an effective system, the laser beam, the powder beam, and their interactions need to be fully understood. In this paper, the laser-material interaction within the melt pool is reported using a multi-scale model: A macroscopic model to model mass, heat, and momentum transfer. Experiments were also conducted to validate the simulation model.


Numerical Simulation Of The Evolution Of Solidification Microstructure In Laser Deposition, Zhiqiang Fan, Todd E. Sparks, Frank W. Liou, Anand Jambunathan, Yaxin Bao, Jianzhong Ruan, Joseph William Newkirk Aug 2007

Numerical Simulation Of The Evolution Of Solidification Microstructure In Laser Deposition, Zhiqiang Fan, Todd E. Sparks, Frank W. Liou, Anand Jambunathan, Yaxin Bao, Jianzhong Ruan, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A predictive model is developed to simulate the evolution of the solidification microstructure during the laser deposition process. The microstructure model is coupled with a comprehensive macroscopic thermodynamic model. This model simulates dendritic grain structures and morphological evolution in solidification. Based on the cellular automata approach, this microstructure model takes into account the heterogeneous nucleation both within the melt pool and at the substrate/melt interface, the growth kinetics, and preferential growth directions of dendrites. Both diffusion and convection effects are included. This model enables prediction and visualization of grain structures during and after the deposition process. This model is applied …


Evaluation Of Mechanical Properties And Microstructure For Laser Deposition Process And Welding Process, Yaxin Bao, Jianzhong Ruan, Todd E. Sparks, Jambunathan Anand, Joseph William Newkirk, Frank W. Liou Aug 2006

Evaluation Of Mechanical Properties And Microstructure For Laser Deposition Process And Welding Process, Yaxin Bao, Jianzhong Ruan, Todd E. Sparks, Jambunathan Anand, Joseph William Newkirk, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Laser Aided Manufacturing Process (LAMP) can be applied to repair steel die/molds which are currently repaired using traditional welding process in industry. In order to fully understand the advantages of laser deposition repair process over traditional welded-repair process, the mechanical properties such as tensile strength and hardness of H13 tool steel samples produced by these two processes were investigated. The microstructure and fracture surface of the samples were analyzed using optical microscope and SEM (Scanning Electron Microscope). Moreover, depositions on substrates with different shapes were studied to evaluate the performance of LAMP on damaged parts with complicated geometric shape.


Comparison Of Thermal Properties Of Laser Deposition And Traditional Welding Process Via Thermal Diffusivity Measurement, Yu Yang, Omoghene Osaze Obahor, Yaxin Bao, Todd E. Sparks, Jianzhong Ruan, Jacquelyn K. Stroble, Robert G. Landers, Joseph William Newkirk, Frank W. Liou Aug 2006

Comparison Of Thermal Properties Of Laser Deposition And Traditional Welding Process Via Thermal Diffusivity Measurement, Yu Yang, Omoghene Osaze Obahor, Yaxin Bao, Todd E. Sparks, Jianzhong Ruan, Jacquelyn K. Stroble, Robert G. Landers, Joseph William Newkirk, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Laser deposition is an effective process for mold and die repair. In order to improve the part repair quality, the process impact on thermal diffusivity and thermal conductivity needs to be understood for laser deposited, welded and virgin H13. In this paper, H13 tool steel samples were made by laser deposition, welding and virgin H13 and then cut into pieces. Experiments were conducted to investigate the thermal diffusivity and conductivity. A laser flash method is used to test these samples. The future work and opportunities are also summarized.


Study Of Ceramic Slurries For Investment Casting With Ice Patterns, Qingbin Liu, Ming-Chuan Leu, Harish Jose, Von Richards Aug 2004

Study Of Ceramic Slurries For Investment Casting With Ice Patterns, Qingbin Liu, Ming-Chuan Leu, Harish Jose, Von Richards

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Ice patterns generated by rapid freeze prototyping or a molding process can be used to make ceramic investment molds for metal castings. Due to the use of ice, the ceramic slurries must be poured around the pattern and cured at sub-freezing temperatures. Success of this process depends greatly on the mold strength after the gelation of the slurries. This paper describes the experimental results of the mold strength after the gelation of the slurries under different compositions. The parameters considered include mixing time, alumino-silicate vs. fused silica ratio, volume of binder, and volume of catalyst. The strength of the gelled …