Open Access. Powered by Scholars. Published by Universities.®

Manufacturing Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Manufacturing

Methods Of Extrusion On Demand For High Solids Loading Ceramic Paste In Freeform Extrusion Fabrication, Wenbin Li, Amir Ghazanfari, Ming-Chuan Leu, Robert G. Landers Aug 2015

Methods Of Extrusion On Demand For High Solids Loading Ceramic Paste In Freeform Extrusion Fabrication, Wenbin Li, Amir Ghazanfari, Ming-Chuan Leu, Robert G. Landers

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Fabrication of highly dense parts with complex geometry by paste-extrusion-based solid freeform fabrication processes requires a precise control of the extrusion flow rate to dispense material on demand, which is often referred as Extrusion-On-Demand (EOD). The extrusion process for aqueous ceramic pastes is complex and difficult to control due to their non-Newtonian behavior, compressibility and inhomogeneity. In this study, three methods of EOD (based on ram extruder, needle valve, and auger valve) are introduced and investigated for the extrusion of high solids loading (i.e., > 50%, volumetric) aqueous alumina paste. Optimal extrusion process parameters for these methods are determined through printing …


Dc-Gain Layer-To-Layer Stability Criterion In Laser Metal Deposition Processes, Patrick M. Sammons, Douglas A. Bristow, Robert G. Landers Aug 2015

Dc-Gain Layer-To-Layer Stability Criterion In Laser Metal Deposition Processes, Patrick M. Sammons, Douglas A. Bristow, Robert G. Landers

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In Laser Metal Deposition (LMD), a blown powder metal additive manufacturing process, functional metal parts are fabricated in a layer-by-layer fashion. In addition to the in-layer dynamics, which describe how the process evolves within a given layer, the additive-fabrication property of LMD creates a second set of dynamics which describe how the process evolves from layer-to-layer. While these dynamics, termed layer-to-layer dynamics, are coupled with both the in-layer dynamics and the process operating conditions, they are not widely considered in the modeling, process planning, or process control of LMD operations. Because of this, seemingly valid choices for process parameters can …


Freeze-Form Extrusion Fabrication Of Functionally Graded Material Composites Using Zirconium Carbide And Tungsten, Ang Li, Aaron S. Thornton, Bradley K. Deuser, Jeremy Lee Watts, Ming-Chuan Leu, Greg Hilmas, Robert G. Landers Aug 2012

Freeze-Form Extrusion Fabrication Of Functionally Graded Material Composites Using Zirconium Carbide And Tungsten, Ang Li, Aaron S. Thornton, Bradley K. Deuser, Jeremy Lee Watts, Ming-Chuan Leu, Greg Hilmas, Robert G. Landers

Materials Science and Engineering Faculty Research & Creative Works

Ultra-high-temperature ceramics are being investigated for future use in aerospace applications due to their superior thermo-mechanical properties, as well as their oxidation resistance, at temperatures above 2000⁰C. However, their brittleness makes them susceptible to thermal shock failure. As graded composites, components fabricated as functionally-graded materials (FGMs) can combine the superior properties of ceramics with the toughness of an underlying refractory metal. This paper discusses the grading of two materials through the use of a Freeze-form Extrusion Fabrication (FEF) system to build FGM parts consisting of zirconium carbide (ZrC) and tungsten (W). Aqueous-based colloidal suspensions of ZrC and W were developed …


Freeze-Form Extrusion Fabrication Of Composite Structures, Ming-Chuan Leu, Lie Tang, Bradley K. Deuser, Robert G. Landers, Greg Hilmas, Shi C. Zhang, Jeremy Lee Watts Aug 2011

Freeze-Form Extrusion Fabrication Of Composite Structures, Ming-Chuan Leu, Lie Tang, Bradley K. Deuser, Robert G. Landers, Greg Hilmas, Shi C. Zhang, Jeremy Lee Watts

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A Freeze-form Extrusion Fabrication (FEF) process capable of making three-dimensional (3D) parts and structures with graded composite materials is presented in this paper. The process development includes the design and manufacture of a gantry machine with a triple-extruder mechanism and the associated electronics hardware and computer software for fabricating functionally graded parts from multiple aqueous pastes. A rheological behavior study with Al2O3 paste is performed to identify an efficient binder for transforming the paste into a pseudoplastic with a high yield stress. A green part is first fabricated using the triple-extruder FEF machine in a layer-by-layer manner …


Experimental Investigation Of Effect Of Environment Temperature On Freeze-Form Extrusion Fabrication, Xiyue Zhao, Michael S. Mason, Tieshu Huang, Ming-Chuan Leu, Robert G. Landers, Greg Hilmas, Samuel J. Easley, Michael W. Hayes Aug 2007

Experimental Investigation Of Effect Of Environment Temperature On Freeze-Form Extrusion Fabrication, Xiyue Zhao, Michael S. Mason, Tieshu Huang, Ming-Chuan Leu, Robert G. Landers, Greg Hilmas, Samuel J. Easley, Michael W. Hayes

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Freeze-form Extrusion Fabrication (FEF) is an additive manufacturing technique that extrudes ceramic loaded aqueous pastes layer by layer below the paste freezing temperature for component fabrication. A computer controlled 3-D gantry system has been developed for the FEF process. The system includes a temperature control subsystem that allows for fabrication of components below the paste freezing temperature. The low temperature environment allows for larger component fabrication. Comparisons in terms of layer thickness, self-sustaining ability, and system response were performed between 0⁰C and -20⁰C for alumina sample fabrications. The minimum deposition angles without use of support material have been determined for …


Freeze-Form Extrusion Fabrication Of Ceramics, Tieshu Huang, Michael S. Mason, Greg Hilmas, Ming-Chuan Leu Aug 2005

Freeze-Form Extrusion Fabrication Of Ceramics, Tieshu Huang, Michael S. Mason, Greg Hilmas, Ming-Chuan Leu

Materials Science and Engineering Faculty Research & Creative Works

A novel, environmentally friendly solid freeform fabrication method called Freeze-form Extrusion Fabrication (FEF) has been developed for the fabrication of ceramic-based components. The method is based on deposition of ceramic pastes using water as the media. The ceramic solids loading can be 50 vol. % or higher and initial studies have focused on the use of aluminum oxide (Al2O3). The FEF system components and their interaction are examined, and the main process parameters affecting part geometry defined. 3-D shaped components have been fabricated by extrusion deposition of the ceramic paste in a layer-by-layer fashion. The feasibility …