Open Access. Powered by Scholars. Published by Universities.®

Manufacturing Commons

Open Access. Powered by Scholars. Published by Universities.®

Structures and Materials

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 34

Full-Text Articles in Manufacturing

Short Strand Carbon Fiber Reinforced Polylactic Acid Filament For Additive Manufacturing, Dale Chenoweth, Lukas Seggi, Luke Phillips Jan 2024

Short Strand Carbon Fiber Reinforced Polylactic Acid Filament For Additive Manufacturing, Dale Chenoweth, Lukas Seggi, Luke Phillips

Williams Honors College, Honors Research Projects

In this design project, the additive manufacturing filament of short strand carbon fiber (SSCF) reinforced polylactic acid (PLA) composite was developed. The micro-size, precision cut SSCFs were mixed with the PLA pellets through a melting homogenization process. Through this process the composite material block is cut and divided into pieces for ease of pelletizing. The material block pieces are then pelletized to be fed through the single screw extruder to develop the SSCF-PLA composite filament. The SSCF-PLA filaments were manufactured with a varying amount of SSCF ranging from 0.5% to 10% of the material block's weight. Development of a 1% …


Feasibility Of Thermoplastic Extrusion Welding As A Joining Method For Vacuum-Assisted Additively Manufactured Tooling, Chase C. Flaherty May 2023

Feasibility Of Thermoplastic Extrusion Welding As A Joining Method For Vacuum-Assisted Additively Manufactured Tooling, Chase C. Flaherty

Electronic Theses and Dissertations

In recent years, additive manufacturing (AM) has been successfully utilized for the production of large-scale composite tooling. Within these endeavors, however, limited research has focused on joining methods between printed sections. This work evaluates the feasibility of thermoplastic extrusion welding as a joining method for additively manufactured tooling structures. This joining method was assessed based on industry specifications of conventional thermoset tooling for wind blade manufacturing utilizing the vacuum-assisted resin transfer molding (VARTM) process. The specifications include requirements for the mechanical strength, vacuum integrity, roughness, and hardness of the tool surface. The feasibility of this welded polymer joint was demonstrated …


Jcati Carbon Fiber Recycler: Crusher System, Devin Riley Jan 2023

Jcati Carbon Fiber Recycler: Crusher System, Devin Riley

All Undergraduate Projects

With a substantial rise in Carbon Fiber use across all industries, the need for a way to recycle the waste has grown as well. A group of Mechanical Engineering Technology students at Central Washington University funded by the Joint Center for Aerospace Technology (JCATI) have created a machine to recycle waste wing trimmings from the Boeing company’s airplanes. This machine consists of 5 different sub-assemblies being the oven, crusher, gear train, conveyor, and shredder. The purpose of this project was to decrease the deflection in the crusher caused by bulging in the housing and movement of the bearings. To decrease …


Investigation Of Additively Manufactured Molybdenum-Tungsten-Rhenium Alloys, Randolph T. Abaya Mar 2022

Investigation Of Additively Manufactured Molybdenum-Tungsten-Rhenium Alloys, Randolph T. Abaya

Theses and Dissertations

The process of creating metal components through additive manufacturing is changing the way different industries can avoid the shortcomings of traditional metal production. Metals such as tungsten, molybdenum, and rhenium have many advantages for different applications, especially when alloyed together. In this study, an additively manufactured alloy containing 70% molybdenum, 25% tungsten, and 5% rhenium (70Mo-25W-5Re) is tested for its strength, ductility, hardness, and porosity. The 70Mo-25W-5Re alloy is printed through Laser Powder Bed Fusion (LPBF) under different conditions such as printing speed and printing atmosphere. Additionally, the effects of post printing heat treatment are conducted to understand the advantages …


Effects Of A Nitrogen And Hydrogen Build Atmosphere On The Properties Of Additively Manufactured Tungsten, Dana C. Madsen Mar 2022

Effects Of A Nitrogen And Hydrogen Build Atmosphere On The Properties Of Additively Manufactured Tungsten, Dana C. Madsen

Theses and Dissertations

Additively manufactured tungsten was printed in pure nitrogen, nitrogen-2.5% hydrogen, and nitrogen-5% hydrogen atmospheres as part of a 2^3 full factorial designed experiment and subjected to room temperature and high-temperature three-point-bend testing, chemical analysis, hardness testing, and microstructural imaging techniques. The pure nitrogen specimens exhibited the highest strength and ductility at both high temperature and room temperature. Chemical analysis showed a 2-8x reduction in compositional oxygen relative to unprocessed powder. Hardness values for all samples was between 306.8 and 361.5 HV1. It is proposed that adding hydrogen into the build atmosphere reduced the available energy density for tungsten melting by …


Jcati Carbon Fiber Recycler: Oven Enclosure, Margarita Romero Jan 2022

Jcati Carbon Fiber Recycler: Oven Enclosure, Margarita Romero

All Undergraduate Projects

Central Washington University partners with Boeing and is funded by the Joint Center of Aerospace Technology Innovation (JCATI) to develop a mechanism that takes carbon fiber wing trimmings from Boeing that are resin coated and recycles carbon fiber. This is done by crushing the wing trimmings and then putting it into a 500°C oven to melt off the resin. This project focuses on the enclosure for the oven and making sure precautions are met such as having the outside surface be less than 45c through heat transfer analysis, argon fills enclosure in 13 minutes through fluid dynamics analysis, and 99% …


Carbon Fiber Recycling: Delamination System, Aaron Eastman Jan 2022

Carbon Fiber Recycling: Delamination System, Aaron Eastman

All Undergraduate Projects

The production of composite wings at Boeing causes carbon fiber waste and CWU Mechanical Engineering Technology students have been tasked in designing a carbon fiber recycling system. This project was brought forth and funded by the Joint Center for Aerospace Technology Innovation (JCATI). There are three subsystems that make up the carbon fiber recycling system, the delamination system, shredding system, and the oven. The purpose of this project was to increase the efficiency and effectiveness of the delamination system of the carbon fiber recycling system. The old system reached approximately 30-40 percent delamination with one pass through the system, and …


Jcati Carbon Fiber Shredder 2022, Parker Sudderth Jan 2022

Jcati Carbon Fiber Shredder 2022, Parker Sudderth

All Undergraduate Projects

This project is a potential solution to keep the carbon fiber waste from airplane manufacturing to a minimum, sponsored by the Joint Center for Aerospace Technology Innovation (JCATI). The design and assembly will be scalable for future industry application. The overall design of the whole carbon fiber recycler consists of a crusher, shredder, and oven. This report is on the caron fiber shredder module. The shredder is tasked with being able to shred the delaminated carbon fiber scrap that directly comes from the crusher. The operation must produce shreds in the proper size to be gathered and delivered to the …


Mechanical Properties Of Nanomodified Hybrid Gfrp Composite Materials, Micah Rop Kimutai Jan 2021

Mechanical Properties Of Nanomodified Hybrid Gfrp Composite Materials, Micah Rop Kimutai

Electronic Theses and Dissertations

The mechanical behavior of the nanomodified hybrid epoxy matrix was investigated in glass fiber reinforced plastics (GFRP). In this study, five nanocomposites enriched with as received halloysite, nanomer I.28E, HNT-APTES, and the hybrid combinations of the two HNTs with the nanomer I.28E were successfully fabricated. To evaluate the effects and morphological characteristics of the individual fillers and the hybrid configurations on the epoxy resin matrix, TGA, DSC, and DMA were analyzed. To understand the effect of the five configurations on the neat GFRP laminate, mode I interlaminar fracture toughness, tensile, and vibration properties were investigated. Electron microscopy testing techniques were …


Miniaturized Ultraviolet Imager Phase Iii, Bradley D. Albright, Nicolas A. Armenta, Colin W. Harrop Jun 2020

Miniaturized Ultraviolet Imager Phase Iii, Bradley D. Albright, Nicolas A. Armenta, Colin W. Harrop

Mechanical Engineering

This document details the work to date, June 9, 2020, done by the Cal Poly Mechanical Engineering senior project team, Miniaturized Ultraviolet Imager: Phase III (MUVI III), sponsored by the University of California, Berkeley – Space Sciences Laboratory (UCB SSL). MUVI III is the third senior project team of an ongoing design, MUVI: the prototype of a 2U sized CubeSat intended to capture aurora images in the ionosphere. The first team, MUVI I, finished development of the UV imager. The second team, MUVI II, designed the mirror mounting and deployable door mechanisms. The goal of MUVI phase III is to …


Influence Of Size Effects On Surface Generation During Finish Machining And Surface Integrity In Ti-6al-4v, Ian S. Brown Jan 2020

Influence Of Size Effects On Surface Generation During Finish Machining And Surface Integrity In Ti-6al-4v, Ian S. Brown

Theses and Dissertations--Mechanical Engineering

Finish machining is an essential manufacturing process that is used to enhance the mechanical characteristics of critical components. The deformation that occurs at the tool and workpiece interface in finish machining significantly affects a host of component properties, commonly referred to as “surface integrity” properties. Surface roughness is a machining deformation-affected characteristic that is of high relevance in contemporary manufacturing. However, over recent decades it has been made clear that the material properties of the deformed surface layers are relevant to component performance as well. Predicting the overall surface quality of a machined component is of great relevance to the …


Rocket Motor Nozzle, Corey Hillegass Jan 2020

Rocket Motor Nozzle, Corey Hillegass

Williams Honors College, Honors Research Projects

For this honors research and senior design project, the authors will research, analyze, and manufacture a rocket motor nozzle for the Akronauts rocket design team. This research and design project will improve how the rocket design team will decide and manufacture nozzles going forward. The impact of this improvement allows the rocket design team to take steps toward being self-sustaining by manufacturing student designed parts as opposed to commercially bought parts. This will not only be successful in increasing student impact on future designs, but also provides a technical challenge for the authors and will present as an impressive feat …


Design Of Banner Tow Mechanism For Bush Plane, Kyle Ciarrone, Ivan Martin, Rishabh Gadi, Tyler Brandt Jan 2020

Design Of Banner Tow Mechanism For Bush Plane, Kyle Ciarrone, Ivan Martin, Rishabh Gadi, Tyler Brandt

Williams Honors College, Honors Research Projects

The 2019-2020 AIAA DBF objective was to design, build, and test a banner-towing bush plane that carries wooden passengers and luggage. Senior members on the team undertook the creation of the banner tow mechanism subsystem as their senior design project on behalf of the design team due to the challenge of its mechanical design and the aerodynamic considerations regarding its placement and enclosure aboard the aircraft. The competition as well as access to campus resources were canceled due to COVID-19, so full testing and integration of the mechanism was not achieved. However, the engineering design process was experienced from the …


Redesign And Analysis For Landing Gear Components, Daniel Clarke Jan 2020

Redesign And Analysis For Landing Gear Components, Daniel Clarke

Williams Honors College, Honors Research Projects

A project for Collins Aerospace, the company I co-op at, where I will redesign several components of a landing gear for a military program. Any structural/stress analysis will also be performed. The goal is to reduce weight while maintaining strength and structural integrity.


An Investigation Of High-Speed Consolidation And Repair Of Carbon Fiber - Epoxy Composites Through Ultrasonic Welding, David A. Hoskins Nov 2019

An Investigation Of High-Speed Consolidation And Repair Of Carbon Fiber - Epoxy Composites Through Ultrasonic Welding, David A. Hoskins

LSU Master's Theses

Adhesive repair of carbon fiber composite structures is commonly done on damaged structures to extend the service life. This method requires careful preparation of the damaged surface with intricate steps to ensure good bonding between the repair patch and the parent structure by means of an adhesive film. As with many forms of composite manufacturing, it is required to perform vacuum bagging, debulking, and a heated cure depending on the resin. All these steps make the repair process costly and time consuming.

In this present work, an alternative method of repair is investigated which explores the experimental feasibility of using …


Redesign Of Cubesat For Beam Charging, Kuba Preis Jun 2019

Redesign Of Cubesat For Beam Charging, Kuba Preis

Industrial and Manufacturing Engineering

This paper is intended to be a study in the applications of the design freedom granted by additive manufacture in the design of a 1U CubeSat frame. The main loads experienced by a CubeSat are structural (during launch) and thermal (solar radiation). Beam charging is an emerging technology which involves charging a CubeSat using a laser beam. In this paper, a CubeSat frame was redesigned to account for the structural loads induced during launch and the thermal loads induced when beam charging. The thermal, weight, design, and structural requirements for a new CubeSat design were derived. The 1U CubeSat frame …


Modifying Casting Parameters To Improve The High Temperature Ductility Of Investment Cast Nickel-Based Superalloy Pwa 1455, Lars Alexander Hedin, Cole Magnum Introligator Jun 2019

Modifying Casting Parameters To Improve The High Temperature Ductility Of Investment Cast Nickel-Based Superalloy Pwa 1455, Lars Alexander Hedin, Cole Magnum Introligator

Materials Engineering

PCC Structurals, an industry leader in superalloy investment castings, has observed inconsistencies in the stress rupture performance of polycrystalline nickel-based superalloy PWA 1455. PCC has changed their casting parameters to reduce the thermal gradient during cooling but have been unable to correlate these changes with an increase in stress rupture elongation. Metallographic examination of past samples indicated microstructures composed of non- equiaxed dendritic grains with mean diameter of .021 inches along the test axis. A similar study on polycrystalline superalloys has indicated that excessive superheat temperatures above the liquidus can result in large grains identical to those observed, limiting the …


Development Of A Multi-Probe Kelvin Scanner Device For Industrially-Relevant Characterization Of Surface-Activated Carbon Fiber Reinforced Thermoplastic Composites, Kirby Simon May 2019

Development Of A Multi-Probe Kelvin Scanner Device For Industrially-Relevant Characterization Of Surface-Activated Carbon Fiber Reinforced Thermoplastic Composites, Kirby Simon

McKelvey School of Engineering Theses & Dissertations

Carbon fiber reinforced thermoplastic (CFRTP) composites are becoming increasingly attractive materials in manufacturing due to their lightweight nature, mechanical strength, and corrosion resistance. Surface activation of these materials is usually required during processing to increase the bond strength of assemblies (aerospace and automotive industries) or improve adhesion with implants (biomedical industry). Industrially-relevant, nondestructive quality control methods for assessing the activation state of these materials do not currently exist, however. Applying principles discovered through the use of scanning probe microscopy, a multiple-probe Kelvin scanning (MPKS) device has been developed that can assess the uniformity of the activation state of plasma-treated CFRTP …


Composite Recycler: Delamination, Nathan Sauer Jan 2019

Composite Recycler: Delamination, Nathan Sauer

All Undergraduate Projects

A great deal of composite waste is generated in the construction of wings for the Boeing 777. These carbon fiber “wing trimmings” are currently being disposed of in a landfill. These carbon fiber boards are made of several layers laminated together, making them very rigid and hard to recycle. This report proposes a method to delaminate the layers of these composite wing trimmings using a hydraulic press and a V-shaped steel die so that they may be more easily shredded and thus recycled. A top, “male” die with two points is pressed into a bottom, “female” die with three points …


Enhanced Surface Integrity With Thermally Stable Residual Stress Fields And Nanostructures In Cryogenic Processing Of Titanium Alloy Ti-6al-4v, James R. Caudill Jan 2019

Enhanced Surface Integrity With Thermally Stable Residual Stress Fields And Nanostructures In Cryogenic Processing Of Titanium Alloy Ti-6al-4v, James R. Caudill

Theses and Dissertations--Mechanical Engineering

Burnishing is a chipless finishing process used to improve surface integrity by severe plastic deformation (SPD) of surface asperities. As surface integrity in large measure defines the functional performance and fatigue life of aerospace alloys, burnishing is thus a means of increasing the fatigue life of critical components, such as turbine and compressor blades in gas turbine engines. Therefore, the primary objective of this dissertation is to characterize the burnishing-induced surface integrity of Ti-6Al-4V alloy in terms of the implemented processing parameters. As the impact of cooling mechanisms on surface integrity from SPD processing is largely unexplored, a particular emphasis …


Design Survey Of Laminated Composite I-Beam, Mrinmoy Saha Aug 2018

Design Survey Of Laminated Composite I-Beam, Mrinmoy Saha

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

Composite I-beams are popular for high-strength low-weight applications. Learning the macro-mechanics and designing the composite I-beam properly are necessary. In this report, a design overview of the composite I-beam is discussed which is based on classical lamination theory where it includes the homogenization approach, the plane stress assumption and the Kirchhoff hypothesis. Using these assumptions, a method was developed to come up with the effective material properties of a beam. Formulas to calculate maximum deflection and maximum bending stress and shear stress and the stress concentration at the connection of web-flange are discussed which describe ways for designing and manufacturing …


High Strain Rate Dynamic Response Of Aluminum 6061 Micro Particles At Elevated Temperatures And Varying Oxide Thicknesses Of Substrate Surface, Carmine Taglienti Jul 2018

High Strain Rate Dynamic Response Of Aluminum 6061 Micro Particles At Elevated Temperatures And Varying Oxide Thicknesses Of Substrate Surface, Carmine Taglienti

Masters Theses

Cold spray is a unique additive manufacturing process, where a large number of ductile metal micro particles are deposited to create new surface coatings or free-standing structures. Metallic particles are accelerated through a gas stream, reaching velocities of over 1 km/s. Accelerated particles experience a high-strain-rate microscopic ballistic collisions against a target substrate. Large amounts of kinetic energy results in extreme plastic deformation of the particles and substrate. Though the cold spray process has been in use for decades, the extreme material science behind the deformation of particles has not been well understood due to experimental difficulties arising from the …


Ultrasonic Nondestructive Evaluation Of Metal Additive Manufacturing., Venkata Karthik Nadimpalli May 2018

Ultrasonic Nondestructive Evaluation Of Metal Additive Manufacturing., Venkata Karthik Nadimpalli

Electronic Theses and Dissertations

Metal Additive Manufacturing (AM) is increasingly being used to make functional components. One of the barriers for AM components to become mainstream is the difficulty to certify them. AM components can have widely different properties based on process parameters. Improving an AM processes requires an understanding of process-structure-property correlations, which can be gathered in-situ and post-process through nondestructive and destructive methods. In this study, two metal AM processes were studied, the first is Ultrasonic Additive Manufacturing (UAM) and the second is Laser Powder Bed Fusion (L-PBF). The typical problems with UAM components are inter-layer and inter-track defects. To improve the …


Optimal Sintering Temperature Of Ceria-Doped Scandia Stabilized Zirconia For Use In Solid Oxide Fuel Cells, Amanda K. Assuncao Jan 2018

Optimal Sintering Temperature Of Ceria-Doped Scandia Stabilized Zirconia For Use In Solid Oxide Fuel Cells, Amanda K. Assuncao

Honors Undergraduate Theses

Carbon emissions are known to cause decay of the Ozone layer in addition to creating pollutant, poisonous air. This has become a growing concern among scientists and engineers across the globe; if this issue is not addressed, it is likely that the Earth will suffer catastrophic consequences. One of the main culprits of these harmful carbon emissions is fuel combustion. Between vehicles, power plants, airplanes, and ships, the world consumes an extraordinary amount of oil and fuel which all contributes to the emissions problem. Therefore, it is crucial to develop alternative energy sources that minimize the impact on the environment. …


Guardian Condor, Kevin Bayonnet Jan 2018

Guardian Condor, Kevin Bayonnet

Williams Honors College, Honors Research Projects

Our group has teamed up with Dr. Williams from Discovery Lab Global to research the capabilities of 3D printed Unmanned Aerial Vehicles (UAVs). The goal of our project is to deliver a 3D printed glider prototype which can later be fitted with electronics for controlled flight. The glider must also carry a payload of 2 to 3 pounds in addition to the electronics. These requirements must be met all while using a basic 3D printer with low cost plastic

Throughout the Fall 2017 semester, our group made a significant amount of progress by completing the conceptual design portion of the …


Investigation Of 2195 And 2219 Post Weld Heat Treatments For Additive Friction Stir Lap Welds, Matthew Champagne Dec 2017

Investigation Of 2195 And 2219 Post Weld Heat Treatments For Additive Friction Stir Lap Welds, Matthew Champagne

University of New Orleans Theses and Dissertations

To evaluate potential uses for friction stir welding in additive manufacturing, two separate parts were fabricated, one of 2195-T84 and the other 2219-T87, utilizing fixed pin techniques and additive lap welds. The parts were cut into samples, artificially aged and subjected to Rockwell hardness (HRB), Vickers hardness, micrographic photography, and metallographic imaging on both pre- and post- heat treatment. Additionally, tensile testing was performed on the heat-treated samples. A comparisons of test results showed a minimal increase in the yield strength of the 2195-T84 samples compared to as-welded tensile results obtained from a previous project. The ultimate tensile strength was …


Deployable Antenna For Cubesat, Mackenzie Thomas Lennon, Caleb Andrew Barber, David Matthew Galves Jun 2017

Deployable Antenna For Cubesat, Mackenzie Thomas Lennon, Caleb Andrew Barber, David Matthew Galves

Mechanical Engineering

This project is a proof-of-concept ground model of a large deployable antenna designed for the small space requirements of CubeSats. This small deployment module is designed to fit a 2 m by 1 m reflective antenna inside a storage volume of with the dimensions 20 cm by 20 cm x 40 cm. The reflector will be deployed to a parabolic shape with the goal of modeling the reflector necessary for high frequency communication. Because this module is designed as a proof-of-concept for the deployable parabolic reflector specifically, no electrical components will be incorporated and will just focus on the deployment …


Weather Balloon Payload Box, Shellbie Liberty Jan 2017

Weather Balloon Payload Box, Shellbie Liberty

All Undergraduate Projects

A payload box holding a self-rotating camera was constructed to go on a weather balloon that will document the upcoming solar eclipse on August 21, 2017. A group of physics students, and the paper’s author, are working under Dr. Darci Snowden on the CWU Near Space Observation Team for research dedicated to the eclipse in Oregon. Various projects, including the payload box, are being designed to go up on a high altitude weather balloon. The payload box was designed and constructed to withstand the impact force of falling from 120,000 ft. This was done so the box could be reusable …


Cryogenic Processing Of Al 7050-T7451 Alloy For Improved Surface Integrity, Bo Huang Jan 2016

Cryogenic Processing Of Al 7050-T7451 Alloy For Improved Surface Integrity, Bo Huang

Theses and Dissertations--Mechanical Engineering

Al 7050-T7451 alloy with good combinations of strength, stress corrosion cracking resistance and toughness, is used broadly in the aerospace/aviation industry for fatigue-critical airframe structural components. However, it is also considered as a highly anisotropic alloy as the crack growth behavior along the short transverse direction is very different from the one in the long transverse direction, due to the inhomogeneous microstructure with the elongated grains distributed in the work material used in the sheet/plate applications. Further processes on these materials are needed to improve its mechanical and material properties and broaden its applications.

The material with ultra-fine or nano …


Kinetics Of Aluminization And Homogenization In Wrought H-X750 Nickel-Base Superalloy, Sean Reilly Aug 2014

Kinetics Of Aluminization And Homogenization In Wrought H-X750 Nickel-Base Superalloy, Sean Reilly

Masters Theses

In sub-millimeter sheets of wrought H-X750 Nickel-base superalloy, aluminum-rich coatings are bonded to matrix with a vapor phase aluminization process. If an appropriate amount of aluminum is bonded to matrix with homogenization treatment, the resulting diffusion couple will diffuse into coherent (g/g’) heterogeneous phases creating matrix that is both precipitation and solid solution strengthened.

The diffusional mechanisms for solid solution mass transport involved with the growth and dispersion of bonded aluminum-rich coatings in the aluminization process only differ from the no external mass flow homogenization process with annealing treatment in that the boundary conditions are different. In each case these …