Open Access. Powered by Scholars. Published by Universities.®

Manufacturing Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Manufacturing

Extending Trailer, Alex Grove Jan 2024

Extending Trailer, Alex Grove

Williams Honors College, Honors Research Projects

The goal of this research project is to revolutionize the convenience in towable transportation. This innovative design aims to enhance the versatility of pull-behind trailers by incorporating an extendable feature, allowing users to effortlessly adjust the length according to their specific needs. Whether navigating tight spaces or accommodating extra cargo, our trailer adapts to diverse situations, providing unmatched flexibility. In addition to its adjustable length, the trailer is engineered to be compactable, addressing the storage constraints often faced by users with limited space. The collapsible design ensures easy storage without compromising on functionality, making it an ideal solution for individuals …


The Passing Board, John Fitzgerald Jan 2023

The Passing Board, John Fitzgerald

Williams Honors College, Honors Research Projects

For my Honors Research Project I am taking a more personal route and looking to solve a childhood question/issue by designing a board that is small and easy to transport while also giving the best bounce pass possible. My proposed project would be a board that a soccer player can play a bounce pass onto and receive the ball from. The base of this design sounds simple enough, however, I would like to implement a way that the board can be adjusted to alter the angle of return of the soccer ball after the bounce. I also want to design …


Distillery, Clare Nicholas, Patrick Hanlon Jan 2023

Distillery, Clare Nicholas, Patrick Hanlon

Williams Honors College, Honors Research Projects

The goal for this project is to make a cost effective still. We will be implementing cost saving parts to create a cheap but effective still. From initial research conducted, we will try to combine a stainless steel still and copper still together so that the cheaper material (stainless steel) and the component that removes sulfur compounds (copper) are both implemented. The ME side of the project will focus on the actual design and construction of the parts that will be implemented into the still. Included in the design process will be calculations of heat transfer for the current and …


Dupont Seal Mold Assembly Machine, Brett Biederman, Craig Hanchett, Matthew Chilton Jan 2022

Dupont Seal Mold Assembly Machine, Brett Biederman, Craig Hanchett, Matthew Chilton

Williams Honors College, Honors Research Projects

The Seal Assembly Machine is a custom-built device that is designed to seat a thin polymer part between two mating pieces of metal tooling. To meet the specifications of the sponsor, the Seal Assembly machine must perform its function more quickly and accurately than manual labor at the same task. At the time of compiling this report, the machine is not yet functional due to time constraints.


Npt Test Machine, Lauren Cash Jan 2022

Npt Test Machine, Lauren Cash

Williams Honors College, Honors Research Projects

Located at the Research facility at The Goodyear Tire & Rubber Company, the Non-Pneumatic Tire (NPT) Program is currently in the prototype phase. However, airless tire structures are quickly gaining popularity as an alternative to a traditional pneumatic tire. The NPT Test Machine is a measurement fixture that will perform a series of evaluations to determine the stiffness of an NPT; this will allow the program to expand and evolve more rapidly into a manufacturing phase. In this Senior Design Project, a complete test solution was researched, designed, built, programmed, and validated so that data can be collected, and tires …


Ballistic Impact Mitigation Pad, Adam Pianalto, Nathan Mayer, Wyatt Smith, Nick Green, Douglas Wild Jan 2022

Ballistic Impact Mitigation Pad, Adam Pianalto, Nathan Mayer, Wyatt Smith, Nick Green, Douglas Wild

Williams Honors College, Honors Research Projects

In our senior design project we have decided to work under Dr. Jon Gerhardt on creating a gel pad to mitigate blunt force behind bulletproof vests. Extensive research on injury, materials, manufacturing methods, and NIJ standards was completed during this project. Through the use of advanced modeling software and additive manufacturing, we prototyped a functioning pad to test and compare to a pad that is currently available in today's market. The results proved to be very successful, but there are many areas to improve upon down the road.


Hydraulic Vehicle Challenge, Jacob Steiner, David Kotovets, Evan Blitz, Luke Fetherston, Alex Colucy Jan 2021

Hydraulic Vehicle Challenge, Jacob Steiner, David Kotovets, Evan Blitz, Luke Fetherston, Alex Colucy

Williams Honors College, Honors Research Projects

The target goal of this project is for a team of students to design a vehicle which is based on human power as the primary mover of the system and achieves vehicle propulsion through the required use of hydraulics and pneumatics. In summary, the rider will power a pump that will generate pressure in order to move the fluid that drives the motor. This will result in the powered rotation of the wheels. As there are many possible designs, naturally, this means that the final design for the vehicle will have specific limitations such as weight and the required use …


Entertainment 721, Mark Hendricks, Noah John, Jadon Vanyo, Chelsea Payne Jan 2021

Entertainment 721, Mark Hendricks, Noah John, Jadon Vanyo, Chelsea Payne

Williams Honors College, Honors Research Projects

The goal of this project was to design a luxury, aesthetically pleasing entertainment system with a TV lift mechanism that could be remote controlled. The design would also include a cooling cabinet for gaming systems, a remote locking system, and additional storage. Using a morphological chart and weighted decision matrix for each subsystem key features were determined to be included in the design. Several performance benchmarks were determined to accomplish the team’s design. Almost every benchmark was successful in the build of the first prototype. Several heat calculations and FEA analyses were performed on the system to ensure the success …


4040c Universal Tester Backup, Devan Keeling, John Bowen, Cameron Bosner, Jacob Lenart Jan 2021

4040c Universal Tester Backup, Devan Keeling, John Bowen, Cameron Bosner, Jacob Lenart

Williams Honors College, Honors Research Projects

The 40 Series valve is one of Swagelok's highest volume part families of which 60,000 parts per year shipped are multi-ported. The multiport configuration requires a unique tester to ensure proper assembly and quality of upstream processes.

Due to the multiport configuration of these valves no alternate testing option exists, resulting in a high rate of customer disappointments per day should the equipment fail.

In addition to the tester's criticality, it has also been ranked as one of Swagelok's most unhealthy assets and is probable to experience extended downtime in the future.

This project proposes to design and build a …


Design For Additive Manufacturing (3d Printing), Michael O'Donnell, Michael J. Levy Jan 2021

Design For Additive Manufacturing (3d Printing), Michael O'Donnell, Michael J. Levy

Williams Honors College, Honors Research Projects

The goal of this project is to study the performance of a 3D printed mechanical part subjected to topology optimization. A part that is somewhat complex in its load bearing and geometry will be selected. That part will then be designed, finite element analysis will be performed on it to optimize its topology, and then it will be 3D printed and tested. The goal of topology optimization is to either save material cost and/or part weight due to the ability of 3D printing to manufacture parts with complex and obscure geometry.


Automated Runout Measurement Tool, Ethan Tisch Jan 2020

Automated Runout Measurement Tool, Ethan Tisch

Williams Honors College, Honors Research Projects

A new measurement process and tool is to be developed to improve the existing method for measuring runout on the commutators of brushed DC product.

After an armature is manufactured, the commutator is inspected by placing the completed rotor assembly in one of several non-standard measurement fixtures. An indicator is then positioned on the commutator. A trained operator proceeds to rotate the armature while taking runout and bar-to-bar measurement at various positions along the length of the commutator.

This existing process is slow, costly, and unreliable. For these reasons, there is substantial economic pressure to develop a superior method for …


Recumbent Bicycle Balancing Aid, James Hager Jan 2019

Recumbent Bicycle Balancing Aid, James Hager

Williams Honors College, Honors Research Projects

For our senior design project, our team will be consulting to create a balancing aid system intended for the recumbent bicycle shown below in Figure 1. The owner of the bicycle is Robert Henderson, a former United States Navy sailor from Northeast Ohio who picked up biking and skiing while he was stationed in Maine in the late 80’s. While there, he took to the mountains on the rugged terrain and brought this passion of biking back home to share with his wife, Johanna once he completed his service to his country. Biking became an integral part of the …


Center Lift Trailer Support Structure, Carson Corle, Anthony M. Hayes, Bryan A. Truax Jan 2019

Center Lift Trailer Support Structure, Carson Corle, Anthony M. Hayes, Bryan A. Truax

Williams Honors College, Honors Research Projects

Center lift pontoon trailers have a high center of gravity, therefore have the potential for the pontoon and trailer to tip while cornering. There is need for a component to stabilize the pontoon on the trailer while towing. Different concepts of a support system were sketched to determine the best option. The characteristics that were deemed important for the support system were narrowed down to determine the best concept and the connections of the best design were sketched in greater detail. The forces that the support system would have to withstand to stabilize the pontoon on the trailer were calculated. …


Human Powered Vehicle Design Team: Speed Variable Steering Stabilizer, Eric Miller, Matt Kraml Jan 2018

Human Powered Vehicle Design Team: Speed Variable Steering Stabilizer, Eric Miller, Matt Kraml

Williams Honors College, Honors Research Projects

The Human Powered Vehicle Competition (HPVC) is held annually by ASME at a few locations. The University of Akron has competed in the ASME-East and ASME-West competitions over the past handful of years against universities from all over the world. Objectives of each team for the competition are three-fold: vehicle design, racing performance, and innovation. Our senior design project involved working on the innovation concept for ASME-East 2018 held at Penn State University during the weekend of 4/13. Speed variable steering was decided upon by the entire HPVC team early in the design process as the innovation choice for this …


Human Powered Vehicle Frame Design, Analysis, Manufacturing, And Testing, Christopher Reed, Kole W. Williams Jan 2018

Human Powered Vehicle Frame Design, Analysis, Manufacturing, And Testing, Christopher Reed, Kole W. Williams

Williams Honors College, Honors Research Projects

The University of Akron Human Powered Vehicle Design Team began this academic year with a mission to create a practical, lightweight, safe, and efficient human powered vehicle. The main objectives of ZC18 were inspired by competition in the 2018 Human Powered Vehicle Challenge at ASME E-Fest East. In addition to adhering to the rules of this competition, scoring high on the submitted reports, and competing well in the racing events, the team set a goal to assist in furthering knowledge related to the topic of human powered vehicles.

ZC18 was constructed nearly completely in the University of Akron’s Design Center …


The University Of Akron Human Powered Vehicle Team, Maria E. Rizzo, Andrew J. Derhammer, Christopher M. Trowbridge, Timothy M. Nutt, Joseph R. Boyd, Jeremy W. Marcum, Jonathan E. Adams, Donald G. Haiss, Julia Wood, Brian D. Goshia, Scott T. Fagan, Joshua D. Everhard, Rebecca L. Slivka Jan 2016

The University Of Akron Human Powered Vehicle Team, Maria E. Rizzo, Andrew J. Derhammer, Christopher M. Trowbridge, Timothy M. Nutt, Joseph R. Boyd, Jeremy W. Marcum, Jonathan E. Adams, Donald G. Haiss, Julia Wood, Brian D. Goshia, Scott T. Fagan, Joshua D. Everhard, Rebecca L. Slivka

Williams Honors College, Honors Research Projects

The University of Akron Human Powered Vehicle Team’s 2016 vehicle, Klokan, was designed, manufactured and tested with safety, reliability, performance and ease of use in mind. The vehicle is a fully faired tadpole trike with a lightweight aluminum frame constructed from 6061-T6 tubing having a total weight of 8.9 lbs. To complement the lightweight frame, the fairing is constructed from polycarbonate, PETG and carbon fiber strips which combine into a lightweight, easy to manufacture weather barrier and aerodynamic structure. Klokan was designed to be a safe and efficient mode of everyday transportation which ensures that riders are sufficiently protected by …


Design Of An Sae Baja Racing Off-Road Vehicle Powertrain, Eric T. Payne Jan 2015

Design Of An Sae Baja Racing Off-Road Vehicle Powertrain, Eric T. Payne

Williams Honors College, Honors Research Projects

No abstract provided.