Open Access. Powered by Scholars. Published by Universities.®

Manufacturing Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Manufacturing

Study Of Alloy And Process Modifications To Design Hydrogen Resilient High Hardness Steels, William R. Williams Dec 2021

Study Of Alloy And Process Modifications To Design Hydrogen Resilient High Hardness Steels, William R. Williams

Theses and Dissertations

High hardness steels (HHS) are vulnerable to hydrogen embrittlement, which can lead to rapid degradation of mechanical properties. Improved resistance to hydrogen embrittlement would be beneficial to many industries including construction, automotive, and military. A comparison study was performed to assess the hydrogen susceptibility of select commercially available and in-house designed HHS alloys. Slow strain rate tensile tests, performed with specimens charged with various levels of hydrogen, provided a macroscopic view of the onset of hydrogen embrittlement. Hydrogen permeation and thermal desorption spectroscopy tests determined the uptake and diffusivity of hydrogen through the material. The evaluation of hydrogen susceptibility for …


Assessing Mechanical Performance Of Dissimilar Steel Systems Made Via Wire-Arc Additive Manufacturing, Obed Daniel Acevedo Dec 2021

Assessing Mechanical Performance Of Dissimilar Steel Systems Made Via Wire-Arc Additive Manufacturing, Obed Daniel Acevedo

Masters Theses

Hot stamping is part of a specific type of metalworking procedure widely used in the automotive industry. This research seeks to help make hot stamp tooling component production more cost-effective by using large-scale additive manufacturing. Additive manufacturing can produce dissimilar steel components that can be more cost-effective and time-efficient and allow for complex geometries to be made. A dissimilar steel system consisting of 410 martensitic stainless steel and AWS ER70S-6 mild steel is proposed to make hot stamps, making them more cost-efficient. However, the material interface's mechanical behavior in 410SS-mild steel additively manufactured material systems is not well understood. This …


Transients In Plastic Instabilities During Thermo-Mechanical Reversals In An Additively Manufactured Ti6al4v, Sabina C. Kumar Aug 2021

Transients In Plastic Instabilities During Thermo-Mechanical Reversals In An Additively Manufactured Ti6al4v, Sabina C. Kumar

Doctoral Dissertations

A complex interaction of process variables in an evolving geometry during Additive Manufacturing (AM), can bring about spatial and temporal transients of temperature and stress within each layer in a part. Although AM shares commonalities with conventional processing techniques such as casting, welding, and thermo-mechanical process, published literature has shown that the steady-state conditions are not strictly valid during AM process. Macro-scale fluctuations of thermal gradients (dT/dx: 103 to 107 K/m) combined with local changes in thermal expansion coefficients, crystallographic strains and localized stress-strain constitutive properties in conjunction with thermal cycles, can bring about a plastic strain gradient …


Anisotropic Plasticity Modeling Of Thin Sheets And Its Application To Micro Channel Forming Of Steel Foils, Jie Sheng Jul 2021

Anisotropic Plasticity Modeling Of Thin Sheets And Its Application To Micro Channel Forming Of Steel Foils, Jie Sheng

Mechanical Engineering Research Theses and Dissertations

Thin sheet metals and ultrathin metal foils produced by industrial rolling processes are textured polycrystalline materials and their mechanical behaviors may depend strongly on the orientation of applied loading. Consideration of such plastic anisotropy in advanced modeling of these materials is of the paramount importance in designing optimal manufacturing processes for automotive and other applications using finite element methods. This research addresses several critical issues in anisotropic plasticity modeling and its applications in analyzing micro channel forming of ultrathin stainless-steel foils. An experimental study has first been carried out on the accuracy and sensitivity of measuring the plastic strain ratios …


Thermomechanical Mechanisms That Cause Adhesion Of Aluminum High Pressure Die Castings To The Die, Alex Monroe Jan 2021

Thermomechanical Mechanisms That Cause Adhesion Of Aluminum High Pressure Die Castings To The Die, Alex Monroe

Dissertations, Master's Theses and Master's Reports

In high pressure die casting (HPDC) of aluminum, cast material adhering to die is a significant defect. Adhesion occurs in two primary ways. The casting may stick preventing its removal from the die. Aluminum can also adhere to the die and buildup in local areas on the die surface with additional casting cycles. This second form of adhesion is called soldering. Lubricant is the best technology to control all forms of adhesion, but it comes at the cost of casting porosity, blisters, reduced die life, and increased die casting machine wear. New strategies to prevent adhesion are desired to eliminate …


The Investigation Of The Underlying Microstructure Associated With Fracture Features In 6061 Cold Sprayed Aluminum, Justin White Jan 2021

The Investigation Of The Underlying Microstructure Associated With Fracture Features In 6061 Cold Sprayed Aluminum, Justin White

UNF Graduate Theses and Dissertations

Cold gas dynamic spraying commonly known as cold spray is a process currently used for restoration, re-tolerancing, and application of coatings. With additional resources allocated towards the development of a through process model aimed at predicting the properties of bulk material produced via the Cold Spray process, more lab testing and investigation must be done to capture the effects of the varying microstructure in CS materials. The properties of ultra-fine-grained materials are derived from data collected from coarse grained materials and processes that do not accurately capture the effects as elevated strain rates and ultra-fine-grained materials. The lack of property …


Viability Of A Proposed Transparent Fluid Model For Analog Metal Casting Filling Process, Andres Segura Irazoqui Jan 2021

Viability Of A Proposed Transparent Fluid Model For Analog Metal Casting Filling Process, Andres Segura Irazoqui

Dissertations and Theses @ UNI

This research work was conducted to develop a proposed transparent fluid model to mimic dross formation and dispersion in metal castings during the mold filling process. The major cause for dross formation includes the air entrainment, surface turbulence, and bubbles, which create oxide films inside the molten metal. The oxide films are trapped inside the casting after solidification causing detrimental effects on the mechanical properties of the casting.

The objective of the investigation was to explore the feasibility using phenolic urethane as a transparent fluid material to investigate air entrainment mechanism. The experimentation consists of the following materials: the phenolic …