Open Access. Powered by Scholars. Published by Universities.®

Manufacturing Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

University of Tennessee, Knoxville

2021

Additive manufacturing

Articles 1 - 4 of 4

Full-Text Articles in Manufacturing

Structural Stability Of Thermosets During Material Extrusion Additive Manufacturing, Stian K. Romberg Dec 2021

Structural Stability Of Thermosets During Material Extrusion Additive Manufacturing, Stian K. Romberg

Doctoral Dissertations

Over the past decade, the scale of polymer additive manufacturing has been revolutionized with machines that print massive thermoplastic parts with greater geometric complexity than can be achieved by traditional manufacturing methods. However, the heat required to print thermoplastics consumes energy and induces thermal gradients that can reduce manufacturing flexibility and final mechanical properties. With the ability to be extruded at room temperature and excellent compatibility with fibers and fillers, thermoset resins show promise to decrease the energy consumption, expand the manufacturing flexibility, and broaden the material palette offered by large-scale polymer additive manufacturing. However, structural instability in the uncured …


3d Printing Of Hybrid Architectures Via Core-Shell Material Extrusion Additive Manufacturing, Robert Cody Pack May 2021

3d Printing Of Hybrid Architectures Via Core-Shell Material Extrusion Additive Manufacturing, Robert Cody Pack

Doctoral Dissertations

Biological materials often employ hybrid architectures, such as the core-shell motif present in porcupine quills and plant stems, to achieve unique properties and performance. Drawing inspiration from these natural materials, a new method to fabricate lightweight and stiff core-shell architected filaments is reported. Specifically, a core-shell printhead conducive to printing highly loaded fiber-filled inks, as well as a new low-density syntactic foam ink, are utilized to 3D-print core-shell architectures consisting of a syntactic epoxy foam core surrounded by a stiff carbon fiber-reinforced epoxy composite shell. Effective printing of test specimens and structures with controlled geometry, composition, and architecture is demonstrated …


Process-Structure-Property Relationships In 3d-Printed Epoxy Composites Produced Via Material Extrusion Additive Manufacturing, Nadim S. Hmeidat May 2021

Process-Structure-Property Relationships In 3d-Printed Epoxy Composites Produced Via Material Extrusion Additive Manufacturing, Nadim S. Hmeidat

Doctoral Dissertations

Extrusion-based additive manufacturing (AM) technologies, such as direct ink writing (DIW), offer unique opportunities to create composite materials and novel multi-material architectures that are not feasible using other AM technologies. DIW is a novel 3D-printing approach in which viscoelastic inks, with favorable rheological properties, are extruded through fine nozzles and patterned in a filament form at room temperature.

Recent developments in DIW of polymer composites have led to expanding the range of materials used for printing, as well as introducing novel deposition strategies to control filler orientation and create improved functional/structural composite materials. Despite these substantial advancements, the successful and …


Development Of Data Science Tools For Part Qualification In Additive Manufacturing, Sujana Chandrasekar May 2021

Development Of Data Science Tools For Part Qualification In Additive Manufacturing, Sujana Chandrasekar

Doctoral Dissertations

In recent years, metal additive manufacturing processes have become popular choices for part production especially for low volume, high complexity parts. To enable widespread adoption of these methods, it is essential to understand the link between process parameters and part properties. This is particularly because additive manufacturing processes cause inherently complex thermo-mechanical cycles and drastically different local process conditions within a part, compared to conventional manufacturing processes like casting and forging. Additionally, properties of feedstock material like metal powder impact final part properties. The focus of this dissertation is on development of data-driven methods using in situ monitoring, as a …