Open Access. Powered by Scholars. Published by Universities.®

Manufacturing Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Manufacturing

Spall Characteristics Of Additively Manufactured Stainless Steel, Kevin Lamb Aug 2023

Spall Characteristics Of Additively Manufactured Stainless Steel, Kevin Lamb

Doctoral Dissertations

Additive manufacturing (AM) has rapidly transformed from a novelty prototyping technology into a growing sector of production across a wide range of industries. Much work has been documented in literature to demonstrate the behavior of AM products under static and quasi-static loading conditions. However, the behavior of AM materials under high strain rate loading is not as well understood. This research attempts to advance the fundamental knowledge of the relationship between the unique aspects of AM and the mechanical performance under high velocity impact loading conditions.

This project examines the behavior of AM 316L stainless steel (SS) exposed to high …


Assessing Mechanical Performance Of Dissimilar Steel Systems Made Via Wire-Arc Additive Manufacturing, Obed Daniel Acevedo Dec 2021

Assessing Mechanical Performance Of Dissimilar Steel Systems Made Via Wire-Arc Additive Manufacturing, Obed Daniel Acevedo

Masters Theses

Hot stamping is part of a specific type of metalworking procedure widely used in the automotive industry. This research seeks to help make hot stamp tooling component production more cost-effective by using large-scale additive manufacturing. Additive manufacturing can produce dissimilar steel components that can be more cost-effective and time-efficient and allow for complex geometries to be made. A dissimilar steel system consisting of 410 martensitic stainless steel and AWS ER70S-6 mild steel is proposed to make hot stamps, making them more cost-efficient. However, the material interface's mechanical behavior in 410SS-mild steel additively manufactured material systems is not well understood. This …


Design For Additive Manufacturing (3d Printing), Michael O'Donnell, Michael J. Levy Jan 2021

Design For Additive Manufacturing (3d Printing), Michael O'Donnell, Michael J. Levy

Williams Honors College, Honors Research Projects

The goal of this project is to study the performance of a 3D printed mechanical part subjected to topology optimization. A part that is somewhat complex in its load bearing and geometry will be selected. That part will then be designed, finite element analysis will be performed on it to optimize its topology, and then it will be 3D printed and tested. The goal of topology optimization is to either save material cost and/or part weight due to the ability of 3D printing to manufacture parts with complex and obscure geometry.


Torch Mounted Wire Nipper, Steven D. Patrick, Matt Montgomery, Ben Rouse, Garrett D. Foust May 2019

Torch Mounted Wire Nipper, Steven D. Patrick, Matt Montgomery, Ben Rouse, Garrett D. Foust

Chancellor’s Honors Program Projects

No abstract provided.


Shape Memory Behavior Of Dense And Porous Niti Alloys Fabricated By Selective Laser Melting, Soheil Saedi Jan 2017

Shape Memory Behavior Of Dense And Porous Niti Alloys Fabricated By Selective Laser Melting, Soheil Saedi

Theses and Dissertations--Mechanical Engineering

Selective Laser Melting (SLM) of Additive Manufacturing is an attractive fabrication method that employs CAD data to selectively melt the metal powder layer by layer via a laser beam and produce a 3D part. This method not only opens a new window in overcoming traditional NiTi fabrication problems but also for producing porous or complex shaped structures. The combination of SLM fabrication advantages with the unique properties of NiTi alloys, such as shape memory effect, superelasticity, high ductility, work output, corrosion, biocompatibility, etc. makes SLM NiTi alloys extremely promising for numerous applications.

The SLM process parameters such as laser power, …