Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Applied Mechanics

Novel Hitch Cargo Cart, Cesilio Sanchez Ramirez, Lance Haidet, Richard Lontoc, Tyler Selinka Dec 2022

Novel Hitch Cargo Cart, Cesilio Sanchez Ramirez, Lance Haidet, Richard Lontoc, Tyler Selinka

Mechanical Engineering

This document presents the engineering design process used to develop, manufacture, and test a new and improved iteration of a hitch cart prototype. This process was performed by a team of four mechanical engineering seniors as part of California Polytechnic State University, San Luis Obispo’s senior design pathway. The goal of this project was to develop a sturdy and reliable iteration of our sponsor’s hitch cart prototype, that integrated the functionality of a vehicle hitch cargo platform and that of a height adjustable cargo cart into a single streamlined and easy to use product. This design could be used by …


Final Design Report For Human Powered Vehicle Drivetrain Project, Derek Fromm, Luke Opitz, Michael Juri, Olivier Côté May 2019

Final Design Report For Human Powered Vehicle Drivetrain Project, Derek Fromm, Luke Opitz, Michael Juri, Olivier Côté

Mechanical Engineering

The Cal Poly Human Powered Vehicle Club is building a bike to surpass 61.3 mph in 2019. The club and their mentor, George Leone, have proposed a senior project to design, build, and test the drivetrain for this year’s human powered vehicle. Research into human powered vehicles and their drivetrains has shown that the power that a rider can output and the efficiency at which the rider can pedal depend extensively on the design of the drivetrain. Despite the existence of standard bicycle drivetrain designs, the senior project team has found that the best design to meet the club’s requirements …


Dyno-Mite Redesign, Brandon Joseph Miller, Daniel Robert Hoffman, Richard Demedici Young Dec 2017

Dyno-Mite Redesign, Brandon Joseph Miller, Daniel Robert Hoffman, Richard Demedici Young

Mechanical Engineering

The Cal Poly Mechanical Control Systems Laboratory currently employs an outdated device, known as the Motomatic, to teach students about various motor characteristics and control methods. These include open-loop vs. closed-loop control, speed vs. position control, and DC motor response curves. The current device does not function properly and produces unreliable data due to overwhelming non-linear effects such as stiction and shaft misalignment. Our team was tasked with designing a replacement device that retains many of the same educational goals as the original lab procedure, while also adding new educational goals pertaining to the device system dynamics. The new apparatus, …