Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Clemson University

Bistable

Discipline
Publication Year
Publication

Articles 1 - 2 of 2

Full-Text Articles in Applied Mechanics

Investigation Of Fatigue Response With Analytical And Machine Learning Models And Hygroscopic Analysis Of Asymmetric Bistable Cfrp Composites, Shoab Ahmed Chowdhury Aug 2023

Investigation Of Fatigue Response With Analytical And Machine Learning Models And Hygroscopic Analysis Of Asymmetric Bistable Cfrp Composites, Shoab Ahmed Chowdhury

All Dissertations

Asymmetric bistable carbon fibre reinforced plastic (CFRP) composites enable a broad range of applications as they can sustain multiple stable configurations and have small snap-through load requirements. These unique features, coupled with their light strength-to-weight and stiffness-to-weight ratios, have made them preferred options for multifunctional systems. This study investigates the fatigue and hygroscopic response of 2-ply, [0/90] bistable CFRP laminates and proposes predictive modeling approaches for improved performance.

While previous studies widely researched and documented the fatigue of general composites in axial loading, fatigue analysis of asymmetric bistable composites in the out-of-plane snap-through direction is inadequate. This study performs fatigue …


Examining The Different Snap-Through Characteristics Of Bistable Cfrp Composite Laminates, Vishrut Deshpande May 2022

Examining The Different Snap-Through Characteristics Of Bistable Cfrp Composite Laminates, Vishrut Deshpande

All Theses

Bistable carbon fiber composites, whose bistability arises from having asymmetric fiber layouts in different layers, have shown immense potential for use in shape morphing and adaptive structure applications. While many studies in this field focus on these composite laminates’ external shapes at the two stable states, their snap-through behavior of shifting from one stable shape to the other remains a critical aspect to be investigated in complete detail. Moreover, symmetric loading conditions have been extensively studied based on the classical lamination theory, but the asymmetric loading conditions received far less attention. Therefore, this study examines an asymmetric, localized point load …