Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Applied Mechanics

Valve Efficiency Testing Device, Jake Robert Rydberg, Andrew Keith Willardson, Jake Ben Jezier, Emily Marie Wannenmacher Jun 2023

Valve Efficiency Testing Device, Jake Robert Rydberg, Andrew Keith Willardson, Jake Ben Jezier, Emily Marie Wannenmacher

Mechanical Engineering

This document serves as the official Final Design Review (FDR) for the mechanical engineering team on the Valve Efficiency Testing Device project for the Phillips 66 Rodeo Refinery. The team attends California Polytechnic State University, San Luis Obispo. The project involved designing and building a valve efficiency testing device. The goal was to create a finished test device that can be used in the Phillips 66 Rodeo Refinery machine shop to test reciprocating compressor valves before they are installed. The purpose of this document is to describe the manufacturing and design verification activities that have been completed since Critical Design …


Mechanics Desktop Lab Equipment, Dante Azpilcueta, Quentin F. Mormann, Arfan Ansar Jun 2023

Mechanics Desktop Lab Equipment, Dante Azpilcueta, Quentin F. Mormann, Arfan Ansar

Mechanical Engineering

This paper overviews the design, implementation and testing of a senior project designed to fix the issue of there being no lab equipment or space for content pertaining to mechanic of materials topics. This is of concern as Cal Poly is reorganizing content as it switches to the semester system and is in need of labs for this material. The solution found was to create a portable miniature universal test machine that could be carted into non-lab classrooms. The goal was to create a device that was low-cost, modifiable, durable, easy to manufacture and repair as these were the qualities …


Valve Efficiency Testing Device, Jake Robert Rydberg, Andrew Keith Willardson, Jake Ben Jezier, Emily Marie Wannenmacher Jun 2023

Valve Efficiency Testing Device, Jake Robert Rydberg, Andrew Keith Willardson, Jake Ben Jezier, Emily Marie Wannenmacher

Mechanical Engineering

This document serves as the official Final Design Review (FDR) for the mechanical engineering team on the Valve Efficiency Testing Device project for the Phillips 66 Rodeo Refinery. The team attends California Polytechnic State University, San Luis Obispo. The project involved designing and building a valve efficiency testing device. The goal was to create a finished test device that can be used in the Phillips 66 Rodeo Refinery machine shop to test reciprocating compressor valves before they are installed. The purpose of this document is to describe the manufacturing and design verification activities that have been completed since Critical Design …


Disc Golf Throwing Robot, Nevada S. Schultz, Sydney M. Lewis, Erick Edmundo Daza, Rachel Alysse Greenberg, Peter M. Kean Jun 2023

Disc Golf Throwing Robot, Nevada S. Schultz, Sydney M. Lewis, Erick Edmundo Daza, Rachel Alysse Greenberg, Peter M. Kean

Mechanical Engineering

Disc golf companies need better methods to test disc flight. The scope of this project is to create a disc throwing robot that can throw a disc golf driver 450-500 feet, with control over the speed, spin, and release angle. Research shows that multiple disc-throwing products exist; however, none meet the full requirements of this project. The Cal Poly senior project design team created a proof-of-concept machine. This prototype started as a two-wheel mechanism. Eventually, a third wheel was added, allowing for complete control over disc spin. The three-wheel prototype reached 62 mph when perfectly calibrated. The prototype is accurate, …


Turbine Integrated Pitching System, Elizabeth Costley, Josephine Maiorano, Jeff Larson, Cameron Jackson Jun 2023

Turbine Integrated Pitching System, Elizabeth Costley, Josephine Maiorano, Jeff Larson, Cameron Jackson

Mechanical Engineering

The Cal Poly Wind Power Club (CPWP) tasked this senior project to design, manufacture, test, and deliver a mechanism to pitch the blades for their small-scale horizontal axis wind turbine. CPWP competes in the Collegiate Wind Competition (CWC) against schools across the country, and as such it was critical to comply with the provided competition rules in addition to the design requirement from CPWP. The purpose of the pitching mechanism is to improve the performance and efficiency of the wind turbine by allowing the blades to adjust angles with different wind speeds. Specifically, this project aimed to minimize hub size, …


Headlamp/Bike Light Damping System, Ethan Reece Clark, Alec Stonehouse, Omeed Ostry, Mitchel Anderson Jun 2023

Headlamp/Bike Light Damping System, Ethan Reece Clark, Alec Stonehouse, Omeed Ostry, Mitchel Anderson

Mechanical Engineering

The task for this project is to design a headlamp and/or bike light that absorbs the impact shocks from the user’s actions. The user that the system is being designed for may be riding a bike or running on a trail in the evening or early in the morning where the light needs to be stabilized and their path must be illuminated. This report presents the final design chosen after months of prototyping and design iteration. It encompasses the system design, design verification through testing, implementation, future recommendations, and lessons learned throughout the process. The chosen design utilizes a fully …


Mechanical Metamaterials, Brent A. Peluso, Oliver T. Parker Mar 2023

Mechanical Metamaterials, Brent A. Peluso, Oliver T. Parker

Mechanical Engineering

Mechanical metamaterials are an emerging design strategy aimed at tailoring lattice structures to achieve specific properties such as negative Poisson’s ratios and guiding wave propagation. These metamaterials have received increasing attention from various application domains, including medical devices, aerospace, automobile, and infrastructure. The scope of this project is to vary a single lattice parameter and quantify its effect on the structural properties of the given 3D lattice.