Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Applied Mechanics

Anchoring And Stiffening Techniques For Portable Concrete Barriers, Surajkumar Bhakta Nov 2017

Anchoring And Stiffening Techniques For Portable Concrete Barriers, Surajkumar Bhakta

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Portable concrete barrier (PCB) systems are utilized on federal and state highways in circumstances such as placing adjacent to vertical drop-offs and in construction zones. PCB systems are most commonly used in a free-standing configuration, which are known to have relatively large deflections when impacted. Large deflections are undesirable when dealing with limited space. In order to allow PCBs to be used in space restricted locations, seven PCB anchoring and stiffening techniques were tested and evaluated as per Manual for Assessing Safety Hardware (MASH) testing standards. Results will allow the New Jersey Department of Transportation to update guidance for their …


Cam-Based Pose-Independent Counterweighting For Partial Body-Weight Support In Rehabilitation, Ashish Shinde Oct 2017

Cam-Based Pose-Independent Counterweighting For Partial Body-Weight Support In Rehabilitation, Ashish Shinde

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

This thesis presents the design and testing of a body weight support system for gait training in a two-dimensional workspace. Extension of the system to a three-dimensional workspace is not within the scope of this thesis.

Gait dysfunctions are changes in normal walking patterns, often related to a disease or abnormality in different areas of the body. There are numerous body weight support (BWS) systems present in the market which are applied to rehabilitation scenarios in mobility recovery like in gait training. But most of these BWE systems are costly and generally are stationary devices. A major drawback of such …


Design And Experimentation Of Cable-Driven Platform Stabilization And Control Systems, Matthew Newman Aug 2017

Design And Experimentation Of Cable-Driven Platform Stabilization And Control Systems, Matthew Newman

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Agricultural researchers are constantly attempting to generate crops superior to those currently in use by the world. Whether this means creating crops with greater yield, crops that are more resilient to disease, or crops that can tolerate harsh environments with fewer failures, test plots of these experimental crops must be studied in real-world environments with minimal invasion to determine how they will perform in full-scale agricultural settings. To monitor these crops without interfering on their natural growth, a noninvasive sensor system has been implemented. This system, instituted by the College of Agricultural Sciences and Natural Resources at the University of …


Development Of The End-Effector Of A Cable-Driven Parallel Manipulator For Automated Crop Sensing, Iman Salafian Aug 2017

Development Of The End-Effector Of A Cable-Driven Parallel Manipulator For Automated Crop Sensing, Iman Salafian

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

A four cable-driven parallel manipulator (4CDPM), consisting of sophisticated spectrometers and imagers, is under development for use in acquiring phenotypic and environmental data over an acre-sized maize field. This thesis presents the design, controls, and testing of two sub-systems in a 4CDPM: a Center of Mass Balance System (CMBS) and a Drop-Down System (DDS).

One of the factors that influences stability is the center of mass (COM) position of the end effector. An offset in COM can cause a pendulum effect or an undesired tilt angle. A center of mass balancing system is presented in this thesis to minimize the …


Peridynamic Models For Fatigue And Fracture In Isotropic And In Polycrystalline Materials, Guanfeng Zhang May 2017

Peridynamic Models For Fatigue And Fracture In Isotropic And In Polycrystalline Materials, Guanfeng Zhang

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

To improve design and reliability, extensive efforts has been devoted to understanding damage and failure of materials and structures using numerical simulation, as a complement of theory and experiment. In this thesis, peridynamics is adopted to study fatigue and dynamic failure problems.

Fatigue is a major failure mode in engineering structures. Predicting fracture/failure under cyclic loading is a challenging problem. Classical model cannot directly be applied to problems with discontinuities. A peridynamic model is adopted in this work because of important advantages of peridynamics in allowing autonomous crack initiation and propagation. A recently proposed peridynamic fatigue crack model is considered …


Oxidation Of Ti2Alc In High Temperature Steam Environment, Ziyad M. Smoqi Apr 2017

Oxidation Of Ti2Alc In High Temperature Steam Environment, Ziyad M. Smoqi

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

High temperature oxidation of fuel cladding materials, during the loss of coolant accident (LOCA), is of utmost importance for next-generation nuclear energy systems. Ti2AlC is a promising candidate material for nuclear applications due to its outstanding properties such as thermal stability at high temperatures, oxidation resistance in air, thermal shock resistance, low neutron absorption cross-section, and the resistance to irradiation-induced amorphization. In this research, high temperature steam oxidation experiments were conducted to evaluate the oxidation resistance of Ti2AlC in LOCA conditions. After oxidation in 100% steam at 600 and 800˚C, the oxidation kinetics followed a parabolic …


Negahban Group Report: Saw-Tooth Shear Response Of Aged Poly(Methyl Methacrylate) (Pmma), Mehrdad Negahban Mar 2017

Negahban Group Report: Saw-Tooth Shear Response Of Aged Poly(Methyl Methacrylate) (Pmma), Mehrdad Negahban

Department of Mechanical and Materials Engineering: Faculty Publications

Results for isothermal saw-tooth shear loading experiments conducted on annealed and oven-cooled poly(methyl methacrylate) (PMMA) at temperatures between 50oC and 140oC. The experiments were conducted 1996.