Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Applied Mechanics

Controlling Mechanical Properties Of Well-Defined Polymer Networks, Ipek Sacligil Apr 2023

Controlling Mechanical Properties Of Well-Defined Polymer Networks, Ipek Sacligil

Doctoral Dissertations

Polymer networks are one of the most versatile and highly studied material class that revolutionized many aspects of life. Connecting the final network properties to the molecular parameters of its building blocks remains a major research thrust. Recent advances in network synthesis techniques allowed for accurate predictions of elastic modulus in model networks. Tew Group has developed highly efficient, thiol-norbornene networks with controllable mechanical properties. Chapter 2 focuses on modifying the gel fracture energy predicted by Lake-Thomas theory by accounting for loop defects. This study allowed for a priori estimates of gel fracture energy by combining theory, experiments, and simulations. …


A Multi-Scale Homogenization Scheme For Modeling Anisotropic Material’S Elastic And Failure Response, Justin Matthew Garrard Dec 2021

A Multi-Scale Homogenization Scheme For Modeling Anisotropic Material’S Elastic And Failure Response, Justin Matthew Garrard

Doctoral Dissertations

The effect of small-scale random defects such as microcracks or inclusions are critical to the prediction of material failure, yet including these in a fracture simulation can be difficult to perform efficiently. Typically, work has focused on implementing these through a statistical characterization of the micro- or meso-scales. This characterization has traditionally focused on the spatial distribution of faults, assuming the material is purely isotropic. At the macro-scale, many materials can be assumed to be fully isotropic and homogeneous, but at the small scale may show significant anisotropy or heterogeneity. Other materials may be effectively anisotropic in bulk, such as …


Novel Peridynamic Models For Material Degradation And Mass Transport, Jiangming Zhao Nov 2021

Novel Peridynamic Models For Material Degradation And Mass Transport, Jiangming Zhao

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Fracture and corrosion are two major causes of structure failure. They can interact with each other, leading to faster material degradation. They are also under the influence of environmental conditions. The corrosion rate highly depends on the transportation rate of involving substances, while the fracture can be accelerated significantly due to fluid flow. These complex mechanisms involved in structure failure have troubled classical models for decades. The peridynamic (PD) theory introduced in 2000 has shown great potential in modeling such problems. In this work, we develop novel PD models for fracture, corrosion, mass transport, and viscous flow, which are building …


Phase-Field Fracture Modeling For Interlocking Micro-Architectured Materials, Shubham Sinha Jan 2021

Phase-Field Fracture Modeling For Interlocking Micro-Architectured Materials, Shubham Sinha

Dissertations, Master's Theses and Master's Reports

It is fascinating to see how natural materials like teeth enamel, bone and nacre possess a very high stiffness and strength in spite of the fact that they are composed of minerals mostly. Studies have shown the reason for this aberration as the presence of weaker interfaces with intricate interlocking architectures at microscopic levels in these materials. Inspired by the architecture of these materials, micro-architectured sutures with jig-saw like geometry is being studied in this research study. The main focus of this study is to examine the effects of friction co-efficient and interlocking angles of the jig-saw tabs on pullout …


Elevated Temperature Progressive Damage And Failure Of Duplex Stainless Steel, Darren P. Luke Dec 2018

Elevated Temperature Progressive Damage And Failure Of Duplex Stainless Steel, Darren P. Luke

Civil Engineering ETDs

Ductile failure of metals has been the focus of research efforts within academia and industry for many years since it is tremendously important for understanding the failure of structures under extreme loading conditions. However, limited research has been dedicated to elevated temperature ductile failure, which is critical for evaluating catastrophic events such as industrial, structural or shipping vessel fires. A detailed investigation was conducted on the structural response of Duplex Stainless Steel at elevated temperatures. The temperature dependence of elastic modulus, yield strength, ultimate strength, and ductility was measured up to 1000°C and a continuum damage plasticity model was developed. …


Peridynamic Models For Fatigue And Fracture In Isotropic And In Polycrystalline Materials, Guanfeng Zhang May 2017

Peridynamic Models For Fatigue And Fracture In Isotropic And In Polycrystalline Materials, Guanfeng Zhang

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

To improve design and reliability, extensive efforts has been devoted to understanding damage and failure of materials and structures using numerical simulation, as a complement of theory and experiment. In this thesis, peridynamics is adopted to study fatigue and dynamic failure problems.

Fatigue is a major failure mode in engineering structures. Predicting fracture/failure under cyclic loading is a challenging problem. Classical model cannot directly be applied to problems with discontinuities. A peridynamic model is adopted in this work because of important advantages of peridynamics in allowing autonomous crack initiation and propagation. A recently proposed peridynamic fatigue crack model is considered …


Design Maps For Fracture Resistant Functionally Graded Materials, Muhammad Ridwan Murshed Aug 2016

Design Maps For Fracture Resistant Functionally Graded Materials, Muhammad Ridwan Murshed

Theses and Dissertations

The objective of this research is to generate design maps to identify functionally graded microstructures with enhanced fracture toughness. Several Functionally Graded Materials (FGMs) with an edge crack and membrane loading are considered and the resulting J-integral values are computed numerically using Finite Element Analysis. In order to capture the resulting stress fields accurately, Barsoum elements are used in the vicinity of the crack tip and the simulations are carried out for several crack lengths (a) and material contrasts (κ). The averages of the J-integral values are used to determine the normalized Stress Intensity Factors which are then benchmarked with …


The Formulation And Computation Of The Nonlocal J-Integral In Bond-Based Peridynamics, Wenke Hu, Youn Doh Ha, Florin Bobaru, Stewart A. Silling Jul 2013

The Formulation And Computation Of The Nonlocal J-Integral In Bond-Based Peridynamics, Wenke Hu, Youn Doh Ha, Florin Bobaru, Stewart A. Silling

Florin Bobaru Ph.D.

This work presents a rigorous derivation for the formulation of the J-integral in bond-based peridynamics using the crack infinitesimal virtual extension approach. We give a detailed description of an algorithm for computing this nonlocal version of the J-integral.We present convergence studies (m-convergence and δ-convergence) for two different geometries: a single edge-notch configuration and a double edge-notch sample.We compare the results with results based on the classical J-integral and obtained from FEM calculations that employ special elements near the crack tip.We identify the size of the nonlocal region for which the peridynamic J-integral value is near the classical FEM solutions.We discuss …