Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Applied Mechanics

Analysis Of Composite Plates By Using Mechanics Of Structure Genome And Comparison With Ansys, Banghua Zhao Dec 2016

Analysis Of Composite Plates By Using Mechanics Of Structure Genome And Comparison With Ansys, Banghua Zhao

Open Access Theses

Motivated by a recently discovered concept, Structure Genome (SG) which is defined as the smallest mathematical building block of a structure, a new approach named Mechanics of Structure Genome (MSG) to model and analyze composite plates is introduced. MSG is implemented in a general-purpose code named SwiftComp™, which provides the constitutive models needed in structural analysis by homogenization and pointwise local fields by dehomogenization. To improve the user friendliness of SwiftComp™, a simple graphic user interface (GUI) based on ANSYS Mechanical APDL platform, called ANSYS-SwiftComp GUI is developed, which provides a convenient way to create some common SG models or …


Cyclic Tensile Response Of A Polyurethane Material, Yizhou Nie Aug 2016

Cyclic Tensile Response Of A Polyurethane Material, Yizhou Nie

Open Access Theses

Polyurethane is one of the most widely used polymer materials in the world. With the increasing demand of polyurethane, its mechanical behaviors are particularly of interest. In particular, the response of the material under a quasi-static loading being subject to an impact load. To delineate the effect of rate change on the mechanical response of polyurethane, a tensile experiment was designed where the specimen is initially subjected to quasi-static tensile loading and then to high-rate cyclic tension within the same experiment. Constant strain-rate experiments at both quasi-static and high strain rates are also conducted. The analysis of the results leads …


High-Throughput Mechanical Characterization Methods For Composite Electrodes And In-Situ Analysis Of Li-Ion Batteries, Luize Scalco De Vasconcelos Aug 2016

High-Throughput Mechanical Characterization Methods For Composite Electrodes And In-Situ Analysis Of Li-Ion Batteries, Luize Scalco De Vasconcelos

Open Access Theses

Electrodes in commercial rechargeable batteries are microscopically heterogeneous materials. The constituents often have large variation in their mechanical properties, making the characterization process a challenging task. In addition, the mechanical properties and mechanical behaviors of electrodes are closely coupled with the electrochemical processes of lithium insertion and extraction. There is an urgent need to develop an experimental platform to characterize the chemomechanical response of electrodes under the in-situ conditions of charge and discharge.

In the first part of this thesis, instrumented grid indentation is employed to determine the elastic modulus and hardness of the constituent phases of a composite cathode. …


Mixed Mesh/Nodal Magnetic Equivalent Circuit Modeling Of A Six-Phase Claw-Pole Automotive Alternator, Daniel C. Horvath Apr 2016

Mixed Mesh/Nodal Magnetic Equivalent Circuit Modeling Of A Six-Phase Claw-Pole Automotive Alternator, Daniel C. Horvath

Open Access Theses

Magnetic equivalent circuits (MECs) have been employed by many researchers to model the relationship between magnetic flux and current in electromagnetic systems such as electric machines, transformers and inductors [1] ,[2]. Magnetic circuits are analogous to electric circuits where voltage, current, resistance and conductance are the respective counterparts of magneto-motive force (MMF), magnetic flux, reluctance and permeance. The solution of MECs can be accomplished with the plethora of techniques developed for electrical circuit analysis. Specifically, mesh analysis, based on Kirchoff’s Voltage Law (KVL), and nodal analysis, based on Kirchoffs Current Law (KCL), are two very common solution techniques. Once an …