Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Series

2014

Discipline
Institution
Keyword
Publication

Articles 1 - 17 of 17

Full-Text Articles in Applied Mechanics

Direct Synthesis Of Methane From Co2-H2O Co-Electrolysis In Tubular Solid Oxide Electrolysis Cells, Long Chen, Fanglin Chen, Changrong Xia Dec 2014

Direct Synthesis Of Methane From Co2-H2O Co-Electrolysis In Tubular Solid Oxide Electrolysis Cells, Long Chen, Fanglin Chen, Changrong Xia

Faculty Publications

Directly converting CO2 to hydrocarbons offers a potential route for carbon-neutral energy technologies. Here we report a novel design, integrating the high-temperature CO2–H2O co-electrolysis and low-temperature Fischer–Tropsch synthesis in a single tubular unit, for the direct synthesis of methane from CO2 with a substantial yield of 11.84%.


Engineering Analysis In Imprecise Geometric Models, Riccardo Gasparini Dec 2014

Engineering Analysis In Imprecise Geometric Models, Riccardo Gasparini

FIU Electronic Theses and Dissertations

Engineering analysis in geometric models has been the main if not the only credible/reasonable tool used by engineers and scientists to resolve physical boundaries problems. New high speed computers have facilitated the accuracy and validation of the expected results. In practice, an engineering analysis is composed of two parts; the design of the model and the analysis of the geometry with the boundary conditions and constraints imposed on it.

Numerical methods are used to resolve a large number of physical boundary problems independent of the model geometry. The time expended due to the computational process are related to the imposed …


Synthesis And Formation Mechanism Of Cuins2 Nanocrystals With A Tunable Phase, Chao Yu, Linlin Zhang, Long Tian, Dan Liu, Fanglin Chen, Cheng Wang Nov 2014

Synthesis And Formation Mechanism Of Cuins2 Nanocrystals With A Tunable Phase, Chao Yu, Linlin Zhang, Long Tian, Dan Liu, Fanglin Chen, Cheng Wang

Faculty Publications

Chalcopyrite CuInS2 (CIS) hierarchical structures composed of nanoflakes with a thickness of about 5 nm were synthesized by a facial solvothermal method. The thermodynamically metastable wurtzite phase CIS would be obtained by using InCl3 instead of In(NO3)3 as In precursor. The effects of the In precursor and the volume of concentrated HCl aqueous solution on the phases and morphologies of CIS nanocrystals have been systematically investigated. Experimental results indicated that the obtained phases of CIS nanocrystals were predominantly determined by precursor-induced intermediate products. The photocatalytic properties of chalcopyrite and wurtzite CIS in visible-light-driven degradation of …


Host-Guest Interaction Dictated Selective Adsorption And Fluorescence Quenching Of A Luminescent Lightweight Metal-Organic Framework Toward Liquid Explosives, Dan Liu, Xiaojuan Liu, Yongxin Liu, Yang Yu, Fanglin Chen, Cheng Wang Oct 2014

Host-Guest Interaction Dictated Selective Adsorption And Fluorescence Quenching Of A Luminescent Lightweight Metal-Organic Framework Toward Liquid Explosives, Dan Liu, Xiaojuan Liu, Yongxin Liu, Yang Yu, Fanglin Chen, Cheng Wang

Faculty Publications

In this article, we report the successful preparation of a Mg-based luminescent MIL-53 metal–organic framework (MOF), namely [Mg2(BDC)2(BPNO)]·2DMF (1) (BDC = 1,4-benzene dicarboxylate, BPNO = 4,4’- dipyridyl-N,N’-dioxide, DMF = N,N-dimethylformamide) in a mixed solvent containing a 2 : 3 volume ratio of DMF and ethanol (EtOH) under solvothermal conditions. Desolvated compound 1a can be used as an absorbent for selective adsorption and separation of liquid explosives, including nitroaromatic (nitrobenzene (NB)) and nitroaliphatic (nitromethane (NM) and nitroethane (NE)) compounds, through single crystal-to-single crystal (SC–SC) transformations. As one of the weakly luminescent MOFs, the luminescence of compound 1a could be quenched by …


Understanding The Effects Of Blast Wave On The Intracranial Pressure And Traumatic Brain Injury In Rodents And Humans Using Experimental Shock Tube And Numerical Simulations, Aravind Sundaramurthy Jul 2014

Understanding The Effects Of Blast Wave On The Intracranial Pressure And Traumatic Brain Injury In Rodents And Humans Using Experimental Shock Tube And Numerical Simulations, Aravind Sundaramurthy

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Blast induced neurotrauma (BINT) has been designated as the “signature injury” to warfighters in the recent military conflicts. In the past decade, conflicts in Iraq (operation Iraqi freedom) and Afghanistan (operation enduring freedom) as well as the increasing burden of the terrorism around the world resulted in an increased number of cases with blast Traumatic Brain Injury (bTBI). Recently, a lot of research has been done to study the neurological and neurochemical degenerations resulting from BINT using animal models especially rat models. However, it is not clear how and whether the biological outcomes from animal models can be translated to …


Phonon Confinement Using Spirally Designed Elastic Resonators In Discrete Continuum, Sourav Banerjee, Raiz U. Ahmed Jun 2014

Phonon Confinement Using Spirally Designed Elastic Resonators In Discrete Continuum, Sourav Banerjee, Raiz U. Ahmed

Faculty Publications

Periodic and chiral orientation of microstructures, here we call phononic crystals, have extraordinary capabilities to facilitate the innovative design of new generation metamaterials. Periodic arrangements of phononic crystals are capable of opening portals of non-passing, non-dispersive mechanical waves. Defying conventional design of regular periodicity, in this paper spirally periodic but chiral orientation of resonators are envisioned. Dynamics of the spirally connected resonators and the acoustic wave propagation through the spirally connected multiple local resonators are studied using fundamental physics. In present study the spiral systems with local resonators are assumed to be discrete media immersed in fluid. In this paper …


Redox Stable Anodes For Solid Oxide Fuel Cells, Guoliang Xiao, Fanglin Chen Jun 2014

Redox Stable Anodes For Solid Oxide Fuel Cells, Guoliang Xiao, Fanglin Chen

Faculty Publications

Solid oxide fuel cells (SOFCs) can convert chemical energy from the fuel directly to electrical energy with high efficiency and fuel flexibility. Ni-based cermets have been the most widely adopted anode for SOFCs. However, the conventional Ni-based anode has low tolerance to sulfur-contamination, is vulnerable to deactivation by carbon build-up (coking) from direct oxidation of hydrocarbon fuels, and suffers volume instability upon redox cycling. Among these limitations, the redox instability of the anode is particularly important and has been intensively studied since the SOFC anode may experience redox cycling during fuel cell operations even with the ideal pure hydrogen as …


Characterization Of 3d Interconnected Microstructural Network In Mixed Ionic And Electronic Conducting Ceramic Composites, William M. Harris, Kyle S. Brinkman, Ye Lin, Dong Su, Alex P. Cocco, Arata Nakajo, Matthew B. Degostin, Yu-Chen Karen Chen-Wiegart, Jun Wang, Fanglin Chen, Yong S. Chu, Wilson K. S. Chiu May 2014

Characterization Of 3d Interconnected Microstructural Network In Mixed Ionic And Electronic Conducting Ceramic Composites, William M. Harris, Kyle S. Brinkman, Ye Lin, Dong Su, Alex P. Cocco, Arata Nakajo, Matthew B. Degostin, Yu-Chen Karen Chen-Wiegart, Jun Wang, Fanglin Chen, Yong S. Chu, Wilson K. S. Chiu

Faculty Publications

The microstructure and connectivity of the ionic and electronic conductive phases in composite ceramic membranes are directly related to device performance. Transmission electron microscopy (TEM) including chemical mapping combined with X-ray nanotomography (XNT) have been used to characterize the composition and 3-D microstructure of a MIEC composite model system consisting of a Ce0.8Gd0.2O2 (GDC) oxygen ion conductive phase and a CoFe2O4 (CFO) electronic conductive phase. The microstructural data is discussed, including the composition and distribution of an emergent phase which takes the form of isolated and distinct regions. Performance implications are considered …


Pvc Pipe Longevity Report: Affordability And The 100+ Year Benchmark Standard, Steven Folkman May 2014

Pvc Pipe Longevity Report: Affordability And The 100+ Year Benchmark Standard, Steven Folkman

Mechanical and Aerospace Engineering Faculty Publications

In the United States and Canada, underground water infrastructure was installed during three main time periods because of population growth in the 1800s, 1900–1945, and post 1945. Pipes made of iron constructed in each of these three eras will all start to fail at nearly the same time over the next couple of decades due to the corrosion of the iron pipes. Additionally, the life span of the materials used since the 1960's has changed. Grey cast iron pipes are no longer manufactured and the new ductile iron material has been made thinner to reduce costs, but as a result, …


A Sinteractive Ni-Bazr0.8Y0.2O3-Δ Composite Membrane For Hydrogen Separation, Shumin Fang, Siwei Wang, Kyle S. Brinkman, Fanglin Chen Apr 2014

A Sinteractive Ni-Bazr0.8Y0.2O3-Δ Composite Membrane For Hydrogen Separation, Shumin Fang, Siwei Wang, Kyle S. Brinkman, Fanglin Chen

Faculty Publications

BaZr0.8Y0.2O3−δ (BZY) is an excellent candidate material for hydrogen permeation membranes due to its high bulk proton conductivity, mechanical robustness, and chemical stability in H2O- and CO2-containing environments. Unfortunately, the use of BZY as a separation membrane has been greatly restrained by its highly refractory nature, poor grain boundary proton conductivity, high number of grain boundaries resulting from limited grain growth during sintering, as well as low electronic conductivity. These problems can be resolved by the fabrication of a Ni–BZY composite membrane with large BZY grains, which requires the development …


Nuts & Bolts, Volume 2, Issue 2, Lance Todd, Julie Thomson, Louis Leviticus Apr 2014

Nuts & Bolts, Volume 2, Issue 2, Lance Todd, Julie Thomson, Louis Leviticus

Friends of the Larsen Tractor Museum

Museum Open House is a Success

The Passing of Museum Volunteer Larry Ehlers

Larsen Museum to Auction Twelve Tractors

Details an Estate Planning and Memorial Designation


Towards A Sustainable Modular Robot System For Planetary Exploration, S. G. M. Hossain Apr 2014

Towards A Sustainable Modular Robot System For Planetary Exploration, S. G. M. Hossain

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

This thesis investigates multiple perspectives of developing an unmanned robotic system suited for planetary terrains. In this case, the unmanned system consists of unit-modular robots. This type of robot has potential to be developed and maintained as a sustainable multi-robot system while located far from direct human intervention. Some characteristics that make this possible are: the cooperation, communication and connectivity among the robot modules, flexibility of individual robot modules, capability of self-healing in the case of a failed module and the ability to generate multiple gaits by means of reconfiguration. To demonstrate the effects of high flexibility of an individual …


Investigation Of The High-Temperature Redox Chemistry Of Sr2Fe1.5Mo0.5O6-Δ Via In Situ Neutron Diffraction, Daniel E. Bugaris, Jason P. Hodges, Ashfia Hug, W. Michael Chance, Andreas Heyden, Fanglin Chen, Hans-Conrad Zur Loye Mar 2014

Investigation Of The High-Temperature Redox Chemistry Of Sr2Fe1.5Mo0.5O6-Δ Via In Situ Neutron Diffraction, Daniel E. Bugaris, Jason P. Hodges, Ashfia Hug, W. Michael Chance, Andreas Heyden, Fanglin Chen, Hans-Conrad Zur Loye

Faculty Publications

Crystallographic structural changes were investigated for Sr2Fe1.5Mo0.5O6−δ, an electrode material for symmetric solid oxide fuel cells. The samples of this material were heated and cooled in wet hydrogen and wet oxygen atmospheres, to simulate the reducing and oxidizing conditions experienced under actual fuel cell operating conditions, and their structures and oxygen contents were determined using in situ powder neutron diffraction. The existence of a reversible tetragonal to cubic phase transition was established to occur between room temperature and 400 °C, both on heating and cooling in either oxygen or hydrogen. The …


Ni-Doped Sr2Fe1.5Mo0.5O6-Δ As Anode Materials For Solid Oxide Fuel Cells, Guoliang Xiao, Siwei Wang, Ye Lin, Zhibin Yang, Minfang Han, Fanglin Chen Jan 2014

Ni-Doped Sr2Fe1.5Mo0.5O6-Δ As Anode Materials For Solid Oxide Fuel Cells, Guoliang Xiao, Siwei Wang, Ye Lin, Zhibin Yang, Minfang Han, Fanglin Chen

Faculty Publications

10% Ni-doped Sr2Fe1.5Mo0.5O6-δ with A-site deficiency is prepared to induce in situ precipitation of B-site metals under anode conditions in solid oxide fuel cells. XRD, SEM and TEM results show that a significant amount of nano-sized Ni-Fe alloy metal phase has precipitated out from Sr1.9Fe1.4Ni0.1Mo0.5O6-δ upon reduction at 800C in H2. The conductivity of the reduced composite reaches 29 S cm−1 at 800C in H2. Furthermore, fuel cell performance of the composite anode Sr1.9 …


Influence Of Crystal Structure On The Electrochemical Performance Of A-Site-Deficient Sr1-SNb0.1Co0.9O3-Δ Perovskite Cathodes, Yinlong Zhu, Ye Lin, Xuan Shen, Jaka Sunarso, Wei Zhou, Shanshan Jiang, Dong Su, Fanglin Chen, Zongping Shao Jan 2014

Influence Of Crystal Structure On The Electrochemical Performance Of A-Site-Deficient Sr1-SNb0.1Co0.9O3-Δ Perovskite Cathodes, Yinlong Zhu, Ye Lin, Xuan Shen, Jaka Sunarso, Wei Zhou, Shanshan Jiang, Dong Su, Fanglin Chen, Zongping Shao

Faculty Publications

The creation of A-site cation defects within a perovskite oxide can substantially alter the structure and properties of its stoichiometric analogue. In this work, we demonstrate that by vacating 2 and 5% of Asite cations from SrNb0.1Co0.9O3-δ (SNC1.00) perovskites (Sr1-sNb0.1Co0.9O3-δ,s = 0.02 and 0.05; denoted as SNC0.98 and SNC0.95, respectively), a Jahn–Teller (JT) distortion with varying extents takes place, leading to the formation of a modified crystal lattice within a the perovskite framework. Electrical conductivity, electrochemical performance, chemical compatibility and microstructure of Sr1-sNb0.1Co …


Low Frequency Energy Scavenging Using Sub-Wave Length Scale Acousto-Elastic Metamaterial, Raiz U. Ahmed, Sourav Banerjee Jan 2014

Low Frequency Energy Scavenging Using Sub-Wave Length Scale Acousto-Elastic Metamaterial, Raiz U. Ahmed, Sourav Banerjee

Faculty Publications

This letter presents the possibility of energy scavenging (ES) utilizing the physics of acousto-elastic metamaterial (AEMM) at low frequencies (<∼3KHz). It is proposed to use the AEMM in a dual mode (Acoustic Filter and Energy Harvester), simultaneously. AEMM’s are typically reported for filtering acoustic waves by trapping or guiding the acoustic energy, whereas this letter shows that the dynamic energy trapped inside the soft constituent (matrix) ofmetamaterials can be significantly harvested by strategically embedding piezoelectric wafers in the matrix. With unit cell AEMM model, we experimentally asserted that at lower acoustic frequencies (< ∼3 KHz), maximum power in the micro Watts (∼35µW) range can be generated, whereas, recently reported phononic crystal based metamaterials harvested only nano Watt (∼30nW) power against 10KΩ resistive load. Efficient energy scavengers at low acoustic frequencies are almost absent due to large required size relevant to the acoustic wavelength. Here we report sub wave length scale energy scavengers utilizing the coupled physics of local, structural and matrix resonances. Upon validation of the argument through analytical, numerical and experimental studies, a multi-frequency energy scavenger (ES) with multi-cellmodel is designed with varying geometrical properties capable of scavenging energy (power output from ∼10µW – ∼90µW) between 0.2 KHz and 1.5 KHz acoustic frequencies.


Design, Fabrication, And Properties Of 2-2 Connectivity Cement/Polymer Based Piezoelectric Composites With Varied Piezoelectric Phase Distribution, Xu Dongyu, Cheng Xin, Sourav Banerjee, Huang Shifeng Jan 2014

Design, Fabrication, And Properties Of 2-2 Connectivity Cement/Polymer Based Piezoelectric Composites With Varied Piezoelectric Phase Distribution, Xu Dongyu, Cheng Xin, Sourav Banerjee, Huang Shifeng

Faculty Publications

The laminated 2-2 connectivity cement/polymer based piezoelectric composites with variedpiezoelectric phase distribution were fabricated by employing Lead Zirconium Titanate ceramicas active phase, and mixture of cement powder, epoxy resin, and hardener as matrix phase with a mass proportion of 4:4:1. The dielectric, piezoelectric, and electromechanical coupling properties of the composites were studied. The composites with large total volume fraction ofpiezoelectric phase have large piezoelectric strain constant and relative permittivity, and thepiezoelectric and dielectric properties of the composites are independent of the dimensional variations of the piezoelectric ceramic layer. The composites with small total volume fraction of piezoelectric phase have large …