Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Series

Computational Engineering

Institution
Keyword
Publication Year
Publication

Articles 1 - 10 of 10

Full-Text Articles in Applied Mechanics

Development Of An Improved Mathematical Representation Which Captures The Nonlinear Dynamic Behavior Of A Drill-String Assembly, Eleazar Marquez Feb 2023

Development Of An Improved Mathematical Representation Which Captures The Nonlinear Dynamic Behavior Of A Drill-String Assembly, Eleazar Marquez

Mechanical Engineering Faculty Publications and Presentations

In this study, an improved mathematical representation of a drill-string assembly is developed to provide an alternative assessment on vibration irregularities proliferating downhole due to bit-rock interference. Lateral vibrations receive particular attention due to their high frequency content which alter the dynamic response of the drill-string, instigate casing damage, and impede optimal penetration rates. The response of the drill-string is captured by synthesizing compatible stationary bit excitations, via an auto-regressive digital filter, and implementing Monte Carlo simulation, while the power spectral density function is approximated to elucidate the dynamic characteristics during drilling. Formulating adequate physical parameters for the equation of …


Toward Building Resilient, Sustainable, And Smart Infrastructure In The 21st Century, Aly Mousaad Aly Nov 2018

Toward Building Resilient, Sustainable, And Smart Infrastructure In The 21st Century, Aly Mousaad Aly

Faculty Publications

In recent years, as a result of significant climate change, stringent windstorms are becoming more frequent than before. Given the threat that windstorms bring to people and property, wind/structural engineering research is imperative to improve the resilience of existing and new infrastructure, for community safety and assets protection. The Windstorm Impact, Science and Engineering (WISE) research program at Louisiana State University (LSU) focuses on creating new knowledge applicable to the mitigation of existing and new infrastructure, to survive and perform optimally under natural hazards. To achieve our research goals, we address two imperious challenges: (i) characterization of realistic wind forces …


A Multiscale Model For Damage Progression And Detection In Piezo/Pyroelectric Composite Laminates, Yehia Bahei-El-Din, Amany Micheal Jan 2017

A Multiscale Model For Damage Progression And Detection In Piezo/Pyroelectric Composite Laminates, Yehia Bahei-El-Din, Amany Micheal

Centre for Advanced Materials

Assessment of damage initiation and progression in composite structures reinforced with electrically active filaments is modelled in a multiscale analysis. The analysis developed is a two-tier, interactive analysis, which involves two length scales; macroscopic, and microscopic. The proposed multiscale analysis provides seamless integration of the mechanics at the two length scales, including piezoelectric and pyroelectric coupling effects and damage under overall thermomechanical loads and an electric field applied to electroactive fibers. The macromechanical analysis is performed for multidirectional, fibrous laminates using the lamination theory, including bending, and the micromechanical analysis is performed using a two-phase model and a periodic array …


Detecting Laminate Damage Using Embedded Electrically Active Plies – An Analytical Approach, Amany Micheal, Yehia Bahei-El-Din Jan 2017

Detecting Laminate Damage Using Embedded Electrically Active Plies – An Analytical Approach, Amany Micheal, Yehia Bahei-El-Din

Centre for Advanced Materials

Assessment of damage initiation and progression in composite laminates with embedded electrically active plies is modeled. Utilizing electrically active layers embedded in composite laminates as damage sensors is proposed by several researchers and is mainly assessed experimentally. Sensing damage using embedded electrically active plies is generally preferred over the use of surface mounted PZT wafers since the range of the latter is limited to a very narrow area underneath the surface, while multiple damage mechanisms can generally be found in several plies of the laminate. The solution presented invokes two levels of analysis. Firstly, on the laminate level, applied membrane …


Finite Element Simulation Of Pzt-Aided Interrogation Of Composite Laminates Exhibiting Damage, Amany Micheal, Yehia Bahei-El-Din Nov 2016

Finite Element Simulation Of Pzt-Aided Interrogation Of Composite Laminates Exhibiting Damage, Amany Micheal, Yehia Bahei-El-Din

Centre for Advanced Materials

Piezoelectricity has proved effective in capturing changes in structures caused by various damage mechanisms. In one approach, piezoelectric wafer active sensors (PWAS) are mounted on the surface of the host structure and utilized as both actuators and sensors to interrogate the structure and monitor its health. This is achieved by subjecting the PWAS to a transient electric pulse and reading the resulting voltage. Changes in the stiffness of the substrate due to structural damage affect the response of the PWAS, which could be correlated to integrity of the structure. Applying this technique to fibrous composite laminates encounters particular challenges due …


In-Field Fuel Use And Load States Of Agricultural Field Machinery, Santosh Pitla, Joe D. Luck, Jared Werner, Nannan Lin, Scott A. Shearer Jan 2016

In-Field Fuel Use And Load States Of Agricultural Field Machinery, Santosh Pitla, Joe D. Luck, Jared Werner, Nannan Lin, Scott A. Shearer

Biological Systems Engineering: Papers and Publications

The ability to define in-field tractor load states offers the potential to better specify and characterize fuel consumption rate for various field operations. For the same field operation, the tractor experiences diverse load demands and corresponding fuel use rates as it maneuvers through straight passes, turns, suspended operation for adjustments, repair and maintenance, and biomass or other material transfer operations. It is challenging to determine the actual fuel rate and load states of agricultural machinery using force prediction models, and hence, some form of in-field data acquisition capability is required. Controller Area Networks (CAN) available on the current model tractors …


Stochastic Optimal Control In Nonlinear Systems, Celestin Nkundineza Sep 2010

Stochastic Optimal Control In Nonlinear Systems, Celestin Nkundineza

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Stochastic control is an important area of research in engineering systems that undergo disturbances. Controlling individual states in such systems is critical. The present investigation is concerned with the application of the stochastic optimal control strategy developed by To (2010) and its implementation as well as providing computed results of linear and nonlinear systems under stationary and nonstationary random excitations. In the strategy the feedback matrix is designed based on the achievement of the objectives for individual states in the system through the application of the Lyapunov equation for the system. Each diagonal element in the gain or associated gain …


Studies Of Dynamic Crack Propagation And Crack Branching With Peridynamics, Youn Doh Ha Ph.D., Florin Bobaru Ph.D. Jan 2010

Studies Of Dynamic Crack Propagation And Crack Branching With Peridynamics, Youn Doh Ha Ph.D., Florin Bobaru Ph.D.

Department of Engineering Mechanics: Faculty Publications

In this paper we discuss the peridynamic analysis of dynamic crack branching in brittle materials and show results of convergence studies under uniform grid refinement (m-convergence) and under decreasing the peridynamic horizon (δ-convergence). Comparisons with experimentally obtained values are made for the crack-tip propagation speed with three different peridynamic horizons.We also analyze the influence of the particular shape of themicro-modulus function and of different materials (Duran 50 glass and soda-lime glass) on the crack propagation behavior. We show that the peridynamic solution for this problem captures all the main features, observed experimentally, of dynamic crack propagation and branching, as well …


Convergence, Adaptive Refinement, And Scaling In 1d Peridynamics, Florin Bobaru Ph.D., Mijia Yabg Ph.D., Leonardo F. Alves M.S., Stewart A. Silling Ph.D., Ebrahim Askari Ph.D., Jifeng Xu Ph.D. Jan 2009

Convergence, Adaptive Refinement, And Scaling In 1d Peridynamics, Florin Bobaru Ph.D., Mijia Yabg Ph.D., Leonardo F. Alves M.S., Stewart A. Silling Ph.D., Ebrahim Askari Ph.D., Jifeng Xu Ph.D.

Department of Engineering Mechanics: Faculty Publications

We introduce here adaptive refinement algorithms for the non-local method peridynamics, which was proposed (in J. Mech. Phys. Solids 2000; 48:175–209) as a reformulation of classical elasticity for discontinuities and long-range forces. We use scaling of the micromodulus and horizon and discuss the particular features of adaptivity in peridynamics for which multiscale modeling and grid refinement are closely connected. We discuss three types of numerical convergence for peridynamics and obtain uniform convergence to the classical solutions of static and dynamic elasticity problems in 1D in the limit of the horizon going to zero. Continuous micromoduli lead to optimal rates of …


Influence Of Van Der Waals Forces On Increasing The Strength And Toughness In Dynamic Fracture Of Nanofibre Networks: A Peridynamic Approach, Florin Bobaru Ph.D. Jan 2007

Influence Of Van Der Waals Forces On Increasing The Strength And Toughness In Dynamic Fracture Of Nanofibre Networks: A Peridynamic Approach, Florin Bobaru Ph.D.

Department of Engineering Mechanics: Faculty Publications

The peridynamic method is used here to analyse the effect of van der Waals forces on the mechanical behaviour and strength and toughness properties of three-dimensional nanofibre networks under imposed stretch deformation. The peridynamic formulation allows for a natural inclusion of long-range forces (such as van der Waals forces) by considering all interactions as ‘long-range’. We use van der Waals interactions only between different fibres and do not need to model individual atoms. Fracture is introduced at the microstructural (peridynamic bond) level for the microelastic type bonds, while van der Waals bonds can reform at any time. We conduct statistical …