Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Applied Mechanics

Viscoelasticity Of Ptfe-Based Face Seals, Bo Tan Jan 2021

Viscoelasticity Of Ptfe-Based Face Seals, Bo Tan

Theses and Dissertations--Mechanical Engineering

PTFE-based materials are widely used in areas of tribology, particularly in seal and bearing applications because of their outstanding self-lubricating properties. Often in dynamic seal applications there is a need for ultra-low mechanical friction loss between the sealing surfaces. Due to its extremely low friction coefficient, there is interest in employing Polytetrafluoroethylene (PTFE) materials in such applications. One challenging aspect of employing PTFE is that these materials are viscoelastic and plastic. This dissertation concentrates on the modeling of viscoelastic material response when used as mechanical face seals with a focus on PTFE-based materials. First, the viscoelastic characteristics are measured through …


Enhanced Surface Integrity With Thermally Stable Residual Stress Fields And Nanostructures In Cryogenic Processing Of Titanium Alloy Ti-6al-4v, James R. Caudill Jan 2019

Enhanced Surface Integrity With Thermally Stable Residual Stress Fields And Nanostructures In Cryogenic Processing Of Titanium Alloy Ti-6al-4v, James R. Caudill

Theses and Dissertations--Mechanical Engineering

Burnishing is a chipless finishing process used to improve surface integrity by severe plastic deformation (SPD) of surface asperities. As surface integrity in large measure defines the functional performance and fatigue life of aerospace alloys, burnishing is thus a means of increasing the fatigue life of critical components, such as turbine and compressor blades in gas turbine engines. Therefore, the primary objective of this dissertation is to characterize the burnishing-induced surface integrity of Ti-6Al-4V alloy in terms of the implemented processing parameters. As the impact of cooling mechanisms on surface integrity from SPD processing is largely unexplored, a particular emphasis …


Design And Analysis Of A 3d-Printed, Thermoplastic Elastomer (Tpe) Spring Element For Use In Corrective Hand Orthotics, Kevin Thomas Richardson Jan 2018

Design And Analysis Of A 3d-Printed, Thermoplastic Elastomer (Tpe) Spring Element For Use In Corrective Hand Orthotics, Kevin Thomas Richardson

Theses and Dissertations--Mechanical Engineering

This thesis proposes an algorithm that determine the geometry of 3D-printed, custom-designed spring element bands made of thermoplastic elastomer (TPE) for use in a wearable orthotic device to aid in the physical therapy of a human hand exhibiting spasticity after stroke. Each finger of the hand is modeled as a mechanical system consisting of a triple-rod pendulum with nonlinear stiffness at each joint and forces applied at the attachment point of each flexor muscle. The system is assumed quasi-static, which leads to a torque balance between the flexor tendons in the hand, joint stiffness and the design force applied to …


The Limits & Effects Of Draw On Properties And Morphology Of Pan-Based Precursor And The Resultant Carbon Fibers, Sarah Edrington Jan 2017

The Limits & Effects Of Draw On Properties And Morphology Of Pan-Based Precursor And The Resultant Carbon Fibers, Sarah Edrington

Theses and Dissertations--Mechanical Engineering

The process, structure, and property relationship of PAN fiber as a precursor to carbon fiber was studied. The limitations of stable spinning and property improvement associated with hot draw in solution spinning were found and quantified. Conditions were varied to generated precursor fiber up to the limit of draw, from which actual samples were collected for thermal conversion to carbon fiber. Samples of PAN and subsequent carbon fiber were characterized using tensile testing and x-ray analysis. The effects of draw on modulus and break stress, as well as the orientation of the crystalline structure of both parent precursor and resultant …


Shape Memory Behavior Of Dense And Porous Niti Alloys Fabricated By Selective Laser Melting, Soheil Saedi Jan 2017

Shape Memory Behavior Of Dense And Porous Niti Alloys Fabricated By Selective Laser Melting, Soheil Saedi

Theses and Dissertations--Mechanical Engineering

Selective Laser Melting (SLM) of Additive Manufacturing is an attractive fabrication method that employs CAD data to selectively melt the metal powder layer by layer via a laser beam and produce a 3D part. This method not only opens a new window in overcoming traditional NiTi fabrication problems but also for producing porous or complex shaped structures. The combination of SLM fabrication advantages with the unique properties of NiTi alloys, such as shape memory effect, superelasticity, high ductility, work output, corrosion, biocompatibility, etc. makes SLM NiTi alloys extremely promising for numerous applications.

The SLM process parameters such as laser power, …


Effects Of Magnetic Field On The Shape Memory Behavior Of Single And Polycrystalline Magnetic Shape Memory Alloys, Ali S. Turabi Jan 2015

Effects Of Magnetic Field On The Shape Memory Behavior Of Single And Polycrystalline Magnetic Shape Memory Alloys, Ali S. Turabi

Theses and Dissertations--Mechanical Engineering

Magnetic Shape Memory Alloys (MSMAs) have the unique ability to change their shape within a magnetic field, or in the presence of stress and a change in temperature. MSMAs have been widely investigated in the past decade due to their ability to demonstrate large magnetic field induced strain and higher frequency response than conventional shape memory alloys (SMAs). NiMn-based alloys are the workhorse of metamagnetic shape memory alloys since they are able to exhibit magnetic field induced phase transformation. In these alloys, martensite and austenite phases have different magnetization behavior, such as the parent phase can be ferromagnetic and martensite …


Shape Memory Behavior Of Single Crystal And Polycrystalline Ni-Rich Nitihf High Temperature Shape Memory Alloys, Sayed M. Saghaian Jan 2015

Shape Memory Behavior Of Single Crystal And Polycrystalline Ni-Rich Nitihf High Temperature Shape Memory Alloys, Sayed M. Saghaian

Theses and Dissertations--Mechanical Engineering

NiTiHf shape memory alloys have been receiving considerable attention for high temperature and high strength applications since they could have transformation temperatures above 100 °C, shape memory effect under high stress (above 500 MPa) and superelasticity at high temperatures. Moreover, their shape memory properties can be tailored by microstructural engineering. However, NiTiHf alloys have some drawbacks such as low ductility and high work hardening in stress induced martensite transformation region. In order to overcome these limitations, studies have been focused on microstructural engineering by aging, alloying and processing.

Shape memory properties and microstructure of four Ni-rich NiTiHf alloys (Ni50.3Ti29.7Hf20, Ni50.7Ti29.3Hf20, …


Numerical Modeling And Characterization Of Vertically Aligned Carbon Nanotube Arrays, Johnson Joseph Jan 2013

Numerical Modeling And Characterization Of Vertically Aligned Carbon Nanotube Arrays, Johnson Joseph

Theses and Dissertations--Mechanical Engineering

Since their discoveries, carbon nanotubes have been widely studied, but mostly in the forms of 1D individual carbon nanotube (CNT). From practical application point of view, it is highly desirable to produce carbon nanotubes in large scales. This has resulted in a new class of carbon nanotube material, called the vertically aligned carbon nanotube arrays (VA-CNTs). To date, our ability to design and model this complex material is still limited. The classical molecular mechanics methods used to model individual CNTs are not applicable to the modeling of VA-CNT structures due to the significant computational efforts required. This research is to …