Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Applied Mechanics

The Generation Of A Physics Informed Machine Learning Model To Predict Defect Evolution In Materials & On The Thermally Activated Regime Of Dislocation Motion: A Simulation Driven Study On The Mechanical Behavior Of Crystals, Liam Myhill Dec 2023

The Generation Of A Physics Informed Machine Learning Model To Predict Defect Evolution In Materials & On The Thermally Activated Regime Of Dislocation Motion: A Simulation Driven Study On The Mechanical Behavior Of Crystals, Liam Myhill

All Theses

Line defects in crystals, known as dislocations, govern the mechanisms of plastic deformation at the micro-meso scale. The study of dislocations has proliferated the field of materials science and engineering for since the 1950’s, and modern studies show increasing utilization of computational methods to model the evolution of line defects in material systems. In keeping with modern research practice, the studies herewith demonstrate the use of advanced computing to generate models which can be used to better understand the behaviors of dislocations within crystal matrices. An advanced high-throughput model for a physically informed machine learning graph neural network (PIML-GNN) is …


Molecular Dynamics Simulation On Molybdenum Disulfide: Thermal-Mechanical Properties And Phase Transitions Under External Loading, Mahabubur Rahman May 2023

Molecular Dynamics Simulation On Molybdenum Disulfide: Thermal-Mechanical Properties And Phase Transitions Under External Loading, Mahabubur Rahman

All Dissertations

Due to their remarkable properties, transition metal dichalcogenides (TMDs) have received much scientific interest throughout the past decade. Two layers of chalcogen atoms (S, Se, Te) sandwich a layer of transition metal atoms (Mo, W, Ta) to form the three-atom thick unit cell in TMDs. The interaction between TMD "single layers" is mediated by neighboring chalcogen planes and bonded by Van der Waals forces. Due to this weak out-of-plane interaction, bulk samples can be thinned down to a single layer by exfoliation. Among the TMDs, Molybdenum Disulfide (MoS2) shows promise in the field of electronics, optics, and sensing …