Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Applied Mechanics

Determination Of Chemical Notch, KChem On Aluminum And Steel When Subjected Under Slow Strain Rate Test In Corrosive Environment, Joshua Teo Lee Kuok Apr 2018

Determination Of Chemical Notch, KChem On Aluminum And Steel When Subjected Under Slow Strain Rate Test In Corrosive Environment, Joshua Teo Lee Kuok

Masters Theses

When designing for any mechanical components or system, the question would arise as to how the material would react to the loads subjected on it? Would the component survive its service load? How would it react to environmental corrosion? To answer these questions, the technique used in this thesis paper is the Slow Strain Rate Test (SSRT) method. Aluminum and steel were chosen as the material to be tested in this paper. Al 7075-T651, and Al 6061-T651 was chosen due to its wide range of application, high strength to weight ratio and ease of machinability. It is highly used in …


Finite Element Frequency Domain Solution Of Nonlinear Panel Flutter With Temperature Effects And Fatigue Life Analysis, David Yongxiang Xue Oct 1991

Finite Element Frequency Domain Solution Of Nonlinear Panel Flutter With Temperature Effects And Fatigue Life Analysis, David Yongxiang Xue

Mechanical & Aerospace Engineering Theses & Dissertations

A frequency domain solution method for nonlinear panel flutter with thermal effects using a consistent finite element formulation has been developed. The von Karman nonlinear strain-displacement relation is used to account for large deflections, the quasi-steady first-order piston theory is employed for aerodynamic loading and the quasi-steady thermal stress theory is applied for the thermal stresses with a given change of the temperature distribution, ΔΤ (x, y, z). The equation of motion under a combined thermal-aerodynamic loading can be mathematically separated into two equations and then solved in sequence: (1) thermal-aerodynamic postbuckling and (2) limit-cycle oscillation. The Newton-Raphson iteration technique …