Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Nanoscience and Nanotechnology

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 52

Full-Text Articles in Applied Mechanics

An Investigation Of Testing Parameters On The Frictional Properties Of Patterned Core-Shell Nanostructures, Colin Phelan May 2021

An Investigation Of Testing Parameters On The Frictional Properties Of Patterned Core-Shell Nanostructures, Colin Phelan

Graduate Theses and Dissertations

Friction tests are a beneficial means to analyze the tribological characteristics and advantages of materials and textured surfaces. However, the selected test parameters can significantly influence the results. This work explores the significance of the friction testing parameters on the frictional performances of core-shell nanostructure-textured surfaces (CSNTSs). Several applied normal loads (10 μN, 100 μN, and 500 μN) and diamond counterface indenter tip radii (1 μm, 5 μm, and 20 μm) were selected for the testing of Al/diamond-like-carbon (DLC) and Al/amorphous silicon (a-Si) CSNTSs. The measured friction values of the CSNTSs were then compared to a matching Al/DLC film and …


The Varied Thermal Response Of Magnetic Iron-Oxide Nanoparticles During Induction Heating In Liquid And Solid-Liquid Phase Change Mediums, Joshua Tompkins Dec 2020

The Varied Thermal Response Of Magnetic Iron-Oxide Nanoparticles During Induction Heating In Liquid And Solid-Liquid Phase Change Mediums, Joshua Tompkins

Graduate Theses and Dissertations

This study investigates the induction heating response of uncapped iron oxide nanoparticles sonically dispersed as a nanofluid and mechanically distributed in solid phase change materials. The nanoparticles examined have a mean diameter of 14.42 nm and are magnetically heated in an alternating magnetic field at an amplitude of 72.6 kA/m at frequencies of 217, 303, and 397 kHz. Nanoparticle characterization was undertaken through transition electron microscopy, x-ray diffraction, and dynamic light scattering when in suspension. Carrier fluids were characterized through viscosity, heat capacity, and density measurements which were used in the calorimetric calculation of the specific absorption rate (SAR) of …


Multiscale Modeling Of Carbon Fibers/Graphene Nanoplatelets/Epoxy Hybrid Composites For Aerospace Applications, Hashim Al Mahmud Jan 2020

Multiscale Modeling Of Carbon Fibers/Graphene Nanoplatelets/Epoxy Hybrid Composites For Aerospace Applications, Hashim Al Mahmud

Dissertations, Master's Theses and Master's Reports

Significant research effort has been dedicated for decades to improve the mechanical properties of aerospace polymer-based composite materials. Lightweight epoxy-based composite materials have increasingly replaced the comparatively heavy and expensive metal alloys used in aeronautical and aerospace structural components. In particular, carbon fibers (CF)/graphene nanoplatelets (GNP)/epoxy hybrid composites can be used for this purpose owing to their high specific stiffness and strength. Therefore, this work has been completed to design, predict, and optimize the effective mechanical properties of CF/GNP/epoxy composite materials at different length scales using a multiscale modeling approach. The work-flow of modeling involves a first step of using …


Analysis Of Dynamic Behaviour Of A Tensioned Carbon Nanotube In Thermal And Pressurized Environments, Ahmed Yinusa, Gbeminiyi Sobamowo Mar 2019

Analysis Of Dynamic Behaviour Of A Tensioned Carbon Nanotube In Thermal And Pressurized Environments, Ahmed Yinusa, Gbeminiyi Sobamowo

Karbala International Journal of Modern Science

In this paper, the dynamic behaviour of a tensioned single-walled carbon nanotubes (SWCNT) in thermal and pressurized environments is investigated analytically. With the applications of Bernoulli-Euler and thermal elasticity mechanics theories, the governing equation of motion are developed and solved using Laplace and Fourier transforms. The results of the close form solution in this work are in excellent agreements with past results in literature. From the parametric studies, it is established that as the magnitude of the pressure distribution at the surface increases, the deflection associated with the nanotube increases at any mode of vibration. However, a corresponding increase in …


Low Temperature Desiccants In Atmospheric Water Generation., Sunil Gupta Dec 2018

Low Temperature Desiccants In Atmospheric Water Generation., Sunil Gupta

Electronic Theses and Dissertations

Surging global water demand as well as changes to weather patterns and over exploitation of natural water sources, such as ground water, has made potable water a critical resource in many parts of the World already – one rapidly heading towards a crisis situation. Desalination has been adopted as a solution – this is however energy intensive and impractical for most of the developing countries - those most in need of water. A renewable source of energy is solar thermal and solar photovoltaic. A plentiful source of water is the humidity in the atmosphere. This research is to push the …


Soft-Microrobotics: The Manipulation Of Alginate Artificial Cells, Samuel Sheckman May 2018

Soft-Microrobotics: The Manipulation Of Alginate Artificial Cells, Samuel Sheckman

Mechanical Engineering Research Theses and Dissertations

In this work, the approach to the manipulation of alginate artificial cell soft-microrobots, both individually and in swarms is shown. Fabrication of these artificial cells were completed through centrifugation, producing large volumes of artificial cells, encapsulated with superparamagnetic iron oxide nanoparticles; these artificial cells can be then externally stimulated by an applied magnetic field. The construction of a Permeant Magnet Stage (PMS) was produced to manipulate the artificial cells individually and in swarms. The stage functionalizes the permanent magnet in the 2D xy-plane. Once the PMS was completed, Parallel self-assembly (Object Particle Computation) using swarms of artificial cells in complex …


Phase Transitions In Monochalcogenide Monolayers, Mehrshad Mehboudi May 2018

Phase Transitions In Monochalcogenide Monolayers, Mehrshad Mehboudi

Graduate Theses and Dissertations

Since discovery of graphene in 2004 as a truly one-atom-thick material with extraordinary mechanical and electronic properties, researchers successfully predicted and synthesized many other two-dimensional materials such as transition metal dichalcogenides (TMDCs) and monochalcogenide monolayers (MMs). Graphene has a non-degenerate structural ground state that is key to its stability at room temperature. However, group IV monochalcogenides such as monolayers of SnSe, and GeSe have a fourfold degenerate ground state. This degeneracy in ground state can lead to structural instability, disorder, and phase transition in finite temperature. The energy that is required to overcome from one degenerate ground state to another …


A Nanoindentation Study Of The Fatigue Properties Of Al/A-Si Core-Shell Nanostructures, Jason Steck May 2018

A Nanoindentation Study Of The Fatigue Properties Of Al/A-Si Core-Shell Nanostructures, Jason Steck

Mechanical Engineering Undergraduate Honors Theses

Nanostructure-textured surfaces can reduce friction and increase the reliability of micro- and nanoelectromechanical systems (NEMS/MEMS). For MEMS incorporating moving parts, the fatigue properties of nanostructures pose a challenge to their reliability in long-term applications. In this study, the fatigue behavior of hemispherical Al/a-Si core-shell nanostructures (CSNs), bare hemispherical Al nanodots, and a flat Al/a-Si layered thin film have been studied using nanoindentation and nano-scale dynamic mechanical analysis (nano-DMA) techniques. Fatigue testing with nano-DMA shows that the deformation resistance of CSNs persists through 5.0 × 104 loading cycles at estimated contact pressures greater than 15 GPa. When the a-Si shell …


Multiple Consecutive Recapture Of Rigid Nanoparticles Using A Solid-State Nanopore Sensor, Jungsoo Lee Nov 2017

Multiple Consecutive Recapture Of Rigid Nanoparticles Using A Solid-State Nanopore Sensor, Jungsoo Lee

Mechanical Engineering Research Theses and Dissertations

Solid‐state nanopore sensors have been used to measure the size of a nanoparticle by applying a resistive pulse sensing technique. Previously, the size distribution of the population pool could be investigated utilizing data from a single translocation, however, the accuracy of the distribution is limited due to the lack of repeated data. In this study, we characterized polystyrene nanobeads utilizing single particle recapture techniques, which provide a better statistical estimate of the size distribution than that of single sampling techniques. The pulses and translocation times of two different sized nanobeads (80 nm and 125 nm in diameter) were acquired repeatedly …


Inter-Droplet Membranes For Mechanical Sensing Applications, Nima Tamaddoni Jahromi May 2016

Inter-Droplet Membranes For Mechanical Sensing Applications, Nima Tamaddoni Jahromi

Doctoral Dissertations

This dissertation combines self-assembly phenomena of amphiphilic molecules with soft materials to create and characterize mechanoelectrical transducers and sensors whose sensing elements are thin-film bioinspired membranes comprised of phospholipids or amphiphilic polymers. We show that the structures of these amphiphilic molecules tune the mechanical and electrical properties of these membranes. We show that these properties affect the mechanoelectrical sensing characteristic and range of operation of these membrane transducers. In the experiments, we construct and characterize a membrane-based hair cell embodiment that enables the membrane to be responsive to mechanical perturbations of the hair. The resulting oscillations of membranes formed between …


Development Of A Shape Memory Polymer Soft Microgripper, Marshall Tatro, David J. Cappelleri, Wuming Jing Aug 2015

Development Of A Shape Memory Polymer Soft Microgripper, Marshall Tatro, David J. Cappelleri, Wuming Jing

The Summer Undergraduate Research Fellowship (SURF) Symposium

The ability to control microrobots by means of magnetic fields has become of increasing interest to researchers. These robots’ ability to reach places tethered microrobots otherwise could not leads to many possible applications in the body, such as delivering drugs to targeted locations and performing biopsies. This study shows the use of shape memory polymer (SMP) to wirelessly actuate a microgripper to be used by a controllable microrobot to achieve these functions. Many smart materials were analyzed in order to find the material that most effectively would accomplish wirelessly gripping, manipulating, and releasing a microobject. Multiple microgripper designs were designed, …


Traction-Separation Relationships For Hydrogen-Induced Grain Boundary Embrittlement In Nickel Via Molecular Dynamics Simulations, Wesley Allen Barrows Jul 2015

Traction-Separation Relationships For Hydrogen-Induced Grain Boundary Embrittlement In Nickel Via Molecular Dynamics Simulations, Wesley Allen Barrows

Graduate Theses and Dissertations

The deleterious effects of atomic and molecular hydrogen on the mechanical properties of metals have long been observed. Although several theories exist describing the mechanisms by which hydrogen negatively influences the failure of materials, a consensus has yet to be reached regarding the exact mechanism or combination of mechanisms. Two mechanisms have gained support in explaining hydrogen’s degradative role in non-hydride forming metals: hydrogen-enhanced localized plasticity and hydrogen-enhanced decohesion. Yet, the interplay between these mechanisms and microstructure in metallic materials has not been explained. Accordingly, for this thesis, the three main objectives are: (i) to develop a numerical methodology to …


Highly Transparent, Self-Cleaning, And Antireflective Nanoparticle Coatings, Corey Seth Thompson Dec 2014

Highly Transparent, Self-Cleaning, And Antireflective Nanoparticle Coatings, Corey Seth Thompson

Graduate Theses and Dissertations

Current solar panel technologies require a sheet of glass to serve as both mechanical support and to protect the cells from the environment. The reflection from the glass sheet can reflect up to 8% of the incident light, reducing the power output of the panel. Antireflective coatings can be used to allow more light to enter the panel to be converted into usable electricity. However, no solid thin film materials exhibit a low enough index of refraction to serve as antireflective coatings for common solar glass. The main goal of this research was to investigate the self-cleaning, antifogging, and antireflective …


Nonlinear Vibration Analysis Of Nonlocal Nanowires, Hassan Askari Aug 2014

Nonlinear Vibration Analysis Of Nonlocal Nanowires, Hassan Askari


No abstract provided.


Atomistic Simulation And Virtual Diffraction Characterization Of Alumina Interfaces: Evaluating Structure And Stability For Predictive Physical Vapor Deposition Models, Shawn Patrick Coleman Aug 2014

Atomistic Simulation And Virtual Diffraction Characterization Of Alumina Interfaces: Evaluating Structure And Stability For Predictive Physical Vapor Deposition Models, Shawn Patrick Coleman

Graduate Theses and Dissertations

The objectives of this work are to investigate the structure and energetic stability of different alumina (Al2O3) phases using atomistic simulation and virtual diffraction characterization. To meet these objectives, this research performs molecular statics and molecular dynamics simulations employing the reactive force-field (ReaxFF) potential to model bulk, interface, and surface structures in the θ-, γ-, κ-, and α-Al2O3 system. Simulations throughout this study are characterized using a new virtual diffraction algorithm, developed and implemented for this work, that creates both selected area electron diffraction (SAED) and x-ray diffraction (XRD) line profiles without assuming …


Design And Fundamental Understanding Of Minimum Quantity Lubrication (Mql) Assisted Grinding Using Advanced Nanolubricants, Parash Kalita May 2013

Design And Fundamental Understanding Of Minimum Quantity Lubrication (Mql) Assisted Grinding Using Advanced Nanolubricants, Parash Kalita

Graduate Theses and Dissertations

Abrasive grinding is widely used across manufacturing industry for finishing parts and components requiring smooth superficial textures and precise dimensional tolerances and accuracy. Unlike any other machining operations, the complex thermo-mechanical processes during grinding produce excessive friction-induced energy consumption, heat, and intense contact seizures. Lubrication and cooling from grinding fluids is crucial in minimizing the deleterious effects of friction and heat to maximize the output part quality and process efficiency. The conventional flood grinding approach of an uneconomical application of large quantities of chemically active fluids has been found ineffective to provide sufficient lubrication and produces waste streams and pollutants …


Vibration And Buckling Of Carbon Nanotube, Graphene, And Nanowire, Mohammad Hadi Mahdavi Jan 2013

Vibration And Buckling Of Carbon Nanotube, Graphene, And Nanowire, Mohammad Hadi Mahdavi

Electronic Thesis and Dissertation Repository

Nanostructured materials with superior physical properties hold promise for the development of novel nanodevices. Full potential applications of such advanced materials require accurate characterization of their physical properties, which in turn necessitates the development of computer-based simulations along with novel experimental techniques. Since controlled experiments are difficult for nanoscale materials and atomic studies are computationally expensive, continuum mechanics-based simulations of nanomaterials and nanostructures have become the focal points of computational nano-science and materials modelling.

In this study, emphasis is given to predicting the mechanical behaviour of carbon nanotube (CNT), graphene, nanowire (NW), and nanowire encapsulated in carbon nanotube (NW@CNT), which …


Numerical Modeling And Characterization Of Vertically Aligned Carbon Nanotube Arrays, Johnson Joseph Jan 2013

Numerical Modeling And Characterization Of Vertically Aligned Carbon Nanotube Arrays, Johnson Joseph

Theses and Dissertations--Mechanical Engineering

Since their discoveries, carbon nanotubes have been widely studied, but mostly in the forms of 1D individual carbon nanotube (CNT). From practical application point of view, it is highly desirable to produce carbon nanotubes in large scales. This has resulted in a new class of carbon nanotube material, called the vertically aligned carbon nanotube arrays (VA-CNTs). To date, our ability to design and model this complex material is still limited. The classical molecular mechanics methods used to model individual CNTs are not applicable to the modeling of VA-CNT structures due to the significant computational efforts required. This research is to …


Controlling Nanoparticles Formation In Molten Metallic Bilayers By Pulsed-Laser Interference Heating, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman Jan 2012

Controlling Nanoparticles Formation In Molten Metallic Bilayers By Pulsed-Laser Interference Heating, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman

Mathematics Faculty Publications

The impacts of the two-beam interference heating on the number of core-shell and embedded nanoparticles and on nanostructure coarsening are studied numerically based on the non-linear dynamical model for dewetting of the pulsed-laser irradiated, thin (< 20 nm) metallic bilayers. The model incorporates thermocapillary forces and disjoining pressures, and assumes dewetting from the optically transparent substrate atop of the reflective support layer, which results in the complicated dependence of light reflectivity and absorption on the thicknesses of the layers. Stabilizing thermocapillary effect is due to the local thickness-dependent, steady- state temperature profile in the liquid, which is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Linear stability analysis of the model equations set for Ag/Co bilayer predicts the dewetting length scales in the qualitative agreement with experiment.


Controlling Nanoparticles Formation In Molten Metallic Bilayers By Pulsed-Laser Interference Heating, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman Jan 2012

Controlling Nanoparticles Formation In Molten Metallic Bilayers By Pulsed-Laser Interference Heating, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman

Mikhail Khenner

The impacts of the two-beam interference heating on the number of core-shell and embedded nanoparticles and on nanostructure coarsening are studied numerically based on the non-linear dynamical model for dewetting of the pulsed-laser irradiated, thin (< 20 nm) metallic bilayers. The model incorporates thermocapillary forces and disjoining pressures, and assumes dewetting from the optically transparent substrate atop of the reflective support layer, which results in the complicated dependence of light reflectivity and absorption on the thicknesses of the layers. Stabilizing thermocapillary effect is due to the local thickness-dependent, steady- state temperature profile in the liquid, which is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Linear stability analysis of the model equations set for Ag/Co bilayer predicts the dewetting length scales in the qualitative agreement with experiment.


Finite Element Analysis Of The Contact Deformation Of Piezoelectric Materials, Ming Liu Jan 2012

Finite Element Analysis Of The Contact Deformation Of Piezoelectric Materials, Ming Liu

Theses and Dissertations--Chemical and Materials Engineering

Piezoelectric materials in the forms of both bulk and thin-film have been widely used as actuators and sensors due to their electromechanical coupling. The characterization of piezoelectric materials plays an important role in determining device performance and reliability. Instrumented indentation is a promising method for probing mechanical as well as electrical properties of piezoelectric materials.

The use of instrumented indentation to characterize the properties of piezoelectric materials requires analytical relations. Finite element methods are used to analyze the indentation of piezoelectric materials under different mechanical and electrical boundary conditions.

For indentation of a piezoelectric half space, a three-dimensional finite element …


Formation Of Organized Nanostructures From Unstable Bilayers Of Thin Metallic Liquids, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman Dec 2011

Formation Of Organized Nanostructures From Unstable Bilayers Of Thin Metallic Liquids, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman

Mathematics Faculty Publications

Dewetting of pulsed-laser irradiated, thin (< 20 nm), optically reflective metallic bilayers on an optically transparent substrate with a reflective support layer is studied within the lubrication equations model. A steady-state bilayer film thickness (h) dependent temperature profile is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Large thermocapillary forces are observed along the plane of the liquid-liquid and liquid-gas interfaces due to this h-dependent temperature, which, in turn, is strongly influenced by the h-dependent laser light reflection and absorption. Consequently the dewetting is a result of the competition between thermocapillary and intermolecular forces. A linear analysis of the dewetting length scales established that the non-isothermal calculations better predict the experimental results as compared to the isothermal case within the bounding Hamaker coefficients. Subsequently, a computational non-linear dynamics study of the dewetting pathway was performed for Ag/Co and Co/Ag bilayer systems to predict the morphology evolution. We found that the systems evolve towards formation of different morphologies, including core-shell, embedded, or stacked nanostructure morphologies.


Formation Of Organized Nanostructures From Unstable Bilayers Of Thin Metallic Liquids, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman Dec 2011

Formation Of Organized Nanostructures From Unstable Bilayers Of Thin Metallic Liquids, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman

Mikhail Khenner

Dewetting of pulsed-laser irradiated, thin (< 20 nm), optically reflective metallic bilayers on an optically transparent substrate with a reflective support layer is studied within the lubrication equations model. A steady-state bilayer film thickness (h) dependent temperature profile is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Large thermocapillary forces are observed along the plane of the liquid-liquid and liquid-gas interfaces due to this h-dependent temperature, which, in turn, is strongly influenced by the h-dependent laser light reflection and absorption. Consequently the dewetting is a result of the competition between thermocapillary and intermolecular forces. A linear analysis of the dewetting length scales established that the non-isothermal calculations better predict the experimental results as compared to the isothermal case within the bounding Hamaker coefficients. Subsequently, a computational non-linear dynamics study of the dewetting pathway was performed for Ag/Co and Co/Ag bilayer systems to predict the morphology evolution. We found that the systems evolve towards formation of different morphologies, including core-shell, embedded, or stacked nanostructure morphologies.


Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu T. Tekalign, Margo S. Levine Jan 2011

Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu T. Tekalign, Margo S. Levine

Mathematics Faculty Publications

The linear dispersion relation for longwave surface perturbations, as derived by Levine et al. Phys. Rev. B 75, 205312 (2007) is extended to include a smooth surface energy anisotropy function with a variable anisotropy strength (from weak to strong, such that sharp corners and slightly curved facets occur on the corresponding Wulff shape). Through detailed parametric studies it is shown that a combination of a wetting interaction and strong anisotropy, and even a wetting interaction alone results in complicated linear stability characteristics of strained and unstrained films.


Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu Tekalign, Margo Levine Jan 2011

Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu Tekalign, Margo Levine

Mathematics Faculty Publications

The linear dispersion relation for longwave surface perturbations, as derived by Levine et al. Phys. Rev. B 75, 205312 (2007) is extended to include a smooth surface energy anisotropy function with a variable anisotropy strength (from weak to strong, such that sharp corners and slightly curved facets occur on the corresponding Wulff shape). Through detailed parametric studies it is shown that a combination of a wetting interaction and strong anisotropy, and even a wetting interaction alone results in complicated linear stability characteristics of strained and unstrained films.


Modeling Diverse Physics Of Nanoparticle Self-Assembly In Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner Jan 2011

Modeling Diverse Physics Of Nanoparticle Self-Assembly In Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner

Mathematics Faculty Publications

Presents physics behind dewetting of thin liquid films and mathematical/computational modeling tools (Educational/Research presentation for senior physics majors).


Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu T. Tekalign, Margo S. Levine Jan 2011

Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu T. Tekalign, Margo S. Levine

Mikhail Khenner

The linear dispersion relation for longwave surface perturbations, as derived by Levine et al. Phys. Rev. B 75, 205312 (2007) is extended to include a smooth surface energy anisotropy function with a variable anisotropy strength (from weak to strong, such that sharp corners and slightly curved facets occur on the corresponding Wulff shape). Through detailed parametric studies it is shown that a combination of a wetting interaction and strong anisotropy, and even a wetting interaction alone results in complicated linear stability characteristics of strained and unstrained films.


Modeling Diverse Physics Of Nanoparticle Self-Assembly In Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner Jan 2011

Modeling Diverse Physics Of Nanoparticle Self-Assembly In Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner

Mikhail Khenner

Presents physics behind dewetting of thin liquid films and mathematical/computational modeling tools (Educational/Research presentation for senior physics majors).


Atomic Force Microscopy For Better Probing Surface Properties At Nanoscale: Calibration, Design And Application, Yu Liu Oct 2010

Atomic Force Microscopy For Better Probing Surface Properties At Nanoscale: Calibration, Design And Application, Yu Liu

Electronic Thesis and Dissertation Repository

To measure force by AFM with high resolution requires accurate calibration of optic – lever detection sensitivity and spring constant. On biological AFM force mode, the coupling effects of the liquid environment, spot size of laser beam and laser spot location on AFM cantilever backside, must be considered to correlate the static sensitivities from force curves in air and in liquid for calibration. An effective model has been developed first and experimentally elucidated to calibrate the static sensitivity in liquid. The proposed model eliminates inconvenience of static sensitivity calibration in liquid with possible contamination sources.

The static sensitivity based on …


Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner Mar 2010

Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner

Mathematics Faculty Publications

An introduction to mathematical modeling of ultrathin solid films and the role of such modeling in nanotechnologies: Educational presentation for senior physics majors