Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Applied Mechanics

Characterization Of 3d Interconnected Microstructural Network In Mixed Ionic And Electronic Conducting Ceramic Composites, William M. Harris, Kyle S. Brinkman, Ye Lin, Dong Su, Alex P. Cocco, Arata Nakajo, Matthew B. Degostin, Yu-Chen Karen Chen-Wiegart, Jun Wang, Fanglin Chen, Yong S. Chu, Wilson K. S. Chiu May 2014

Characterization Of 3d Interconnected Microstructural Network In Mixed Ionic And Electronic Conducting Ceramic Composites, William M. Harris, Kyle S. Brinkman, Ye Lin, Dong Su, Alex P. Cocco, Arata Nakajo, Matthew B. Degostin, Yu-Chen Karen Chen-Wiegart, Jun Wang, Fanglin Chen, Yong S. Chu, Wilson K. S. Chiu

Faculty Publications

The microstructure and connectivity of the ionic and electronic conductive phases in composite ceramic membranes are directly related to device performance. Transmission electron microscopy (TEM) including chemical mapping combined with X-ray nanotomography (XNT) have been used to characterize the composition and 3-D microstructure of a MIEC composite model system consisting of a Ce0.8Gd0.2O2 (GDC) oxygen ion conductive phase and a CoFe2O4 (CFO) electronic conductive phase. The microstructural data is discussed, including the composition and distribution of an emergent phase which takes the form of isolated and distinct regions. Performance implications are considered …


A Sinteractive Ni-Bazr0.8Y0.2O3-Δ Composite Membrane For Hydrogen Separation, Shumin Fang, Siwei Wang, Kyle S. Brinkman, Fanglin Chen Apr 2014

A Sinteractive Ni-Bazr0.8Y0.2O3-Δ Composite Membrane For Hydrogen Separation, Shumin Fang, Siwei Wang, Kyle S. Brinkman, Fanglin Chen

Faculty Publications

BaZr0.8Y0.2O3−δ (BZY) is an excellent candidate material for hydrogen permeation membranes due to its high bulk proton conductivity, mechanical robustness, and chemical stability in H2O- and CO2-containing environments. Unfortunately, the use of BZY as a separation membrane has been greatly restrained by its highly refractory nature, poor grain boundary proton conductivity, high number of grain boundaries resulting from limited grain growth during sintering, as well as low electronic conductivity. These problems can be resolved by the fabrication of a Ni–BZY composite membrane with large BZY grains, which requires the development …


Investigation Of The High-Temperature Redox Chemistry Of Sr2Fe1.5Mo0.5O6-Δ Via In Situ Neutron Diffraction, Daniel E. Bugaris, Jason P. Hodges, Ashfia Hug, W. Michael Chance, Andreas Heyden, Fanglin Chen, Hans-Conrad Zur Loye Mar 2014

Investigation Of The High-Temperature Redox Chemistry Of Sr2Fe1.5Mo0.5O6-Δ Via In Situ Neutron Diffraction, Daniel E. Bugaris, Jason P. Hodges, Ashfia Hug, W. Michael Chance, Andreas Heyden, Fanglin Chen, Hans-Conrad Zur Loye

Faculty Publications

Crystallographic structural changes were investigated for Sr2Fe1.5Mo0.5O6−δ, an electrode material for symmetric solid oxide fuel cells. The samples of this material were heated and cooled in wet hydrogen and wet oxygen atmospheres, to simulate the reducing and oxidizing conditions experienced under actual fuel cell operating conditions, and their structures and oxygen contents were determined using in situ powder neutron diffraction. The existence of a reversible tetragonal to cubic phase transition was established to occur between room temperature and 400 °C, both on heating and cooling in either oxygen or hydrogen. The …


Design, Fabrication, And Properties Of 2-2 Connectivity Cement/Polymer Based Piezoelectric Composites With Varied Piezoelectric Phase Distribution, Xu Dongyu, Cheng Xin, Sourav Banerjee, Huang Shifeng Jan 2014

Design, Fabrication, And Properties Of 2-2 Connectivity Cement/Polymer Based Piezoelectric Composites With Varied Piezoelectric Phase Distribution, Xu Dongyu, Cheng Xin, Sourav Banerjee, Huang Shifeng

Faculty Publications

The laminated 2-2 connectivity cement/polymer based piezoelectric composites with variedpiezoelectric phase distribution were fabricated by employing Lead Zirconium Titanate ceramicas active phase, and mixture of cement powder, epoxy resin, and hardener as matrix phase with a mass proportion of 4:4:1. The dielectric, piezoelectric, and electromechanical coupling properties of the composites were studied. The composites with large total volume fraction ofpiezoelectric phase have large piezoelectric strain constant and relative permittivity, and thepiezoelectric and dielectric properties of the composites are independent of the dimensional variations of the piezoelectric ceramic layer. The composites with small total volume fraction of piezoelectric phase have large …


Enhanced Reducibility And Conductivity Of Na/K-Doped Srti0.8Nb0.2O3, Guoliang Xiao, Sirikanda Nuansaeng, Lei Zhang, Suwit Suthirakun, Andreas Heyden, Hans-Conrad Zur Loye, Fanglin Chen Sep 2013

Enhanced Reducibility And Conductivity Of Na/K-Doped Srti0.8Nb0.2O3, Guoliang Xiao, Sirikanda Nuansaeng, Lei Zhang, Suwit Suthirakun, Andreas Heyden, Hans-Conrad Zur Loye, Fanglin Chen

Faculty Publications

Donor and acceptor co-doped SrTiO3 materials have shown interesting features in their conductivity and reducibility. In this work, 10 mol% Na+ or K+ as acceptor dopants have been introduced into the A-site of donor-doped strontium titanate, SrTi0.8Nb0.2O3, and the doping impact on their properties has been studied. By doping with Na or K, the sinterability of SrTi0.8Nb0.2O3 in reducing atmospheres has been improved. Na0.1Sr0.9Ti0.8Nb0.2O3 and K0.1Sr0.9Ti0.8Nb0.2O3 show metallic …


High Performance Low Temperature Solid Oxide Fuel Cells With Novel Electrode Architecture, Yu Chen, Qian Liu, Zhibin Yang, Fanglin Chen, Minfang Han Dec 2012

High Performance Low Temperature Solid Oxide Fuel Cells With Novel Electrode Architecture, Yu Chen, Qian Liu, Zhibin Yang, Fanglin Chen, Minfang Han

Faculty Publications

In this study, we have fabricated high performance low temperature solid oxide fuel cells (LT-SOFCs) with both acicular anodes and cathodes with thin Gd-doped ceria (GDC) electrolyte film. The acicular Ni-Gd0.1Ce0.9O2−δ (Ni-GDC) anode was prepared using freeze drying tape casting, while the hierarchically porous cathode with nano-size Sm0.5Sr0.5CoO3 (SSC) particles covering an acicular GDC skeleton was prepared by a combination of freeze drying tape casting and self-rising approaches. The acicular electrodes with 5–200 μm pores/channels enhance mass transport, while SSC particles of about 50 nm in the cathode promote …