Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Civil and Environmental Engineering

Series

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 35

Full-Text Articles in Applied Mechanics

Accelerated Controller Tuning For Wind Turbines Under Multiple Hazards, Aly Mousaad Aly, Milad Rezaee Mar 2021

Accelerated Controller Tuning For Wind Turbines Under Multiple Hazards, Aly Mousaad Aly, Milad Rezaee

Faculty Publications

During their lifecycle, wind turbines can be subjected to multiple hazard loads, such as high-intensity wind, earthquake, wave, and mechanical unbalance. Excessive vibrations, due to these loads, can have detrimental effects on energy production, structural lifecycle, and the initial cost of wind turbines. Vibration control by various means, such as passive, active, and semi-active control systems provide crucial solutions to these issues. We developed a novel control theory that enables semi-active controller tuning under the complex structural behavior and inherent system nonlinearity. The proposed theory enables the evaluation of semi-active controllers’ performance of multi-degrees-of-freedom systems, without the need for time-consuming …


A Novel Self-Healing System: Towards A Sustainable Porous Asphalt, Shi Xu, Xueyan Liu, Amir Tabakovic, Erik Schlangen Mar 2020

A Novel Self-Healing System: Towards A Sustainable Porous Asphalt, Shi Xu, Xueyan Liu, Amir Tabakovic, Erik Schlangen

Articles

Self-healing asphalt, aimed to produce a sustainable asphalt pavement using green technology, has been studied in the past two decades. Technologies including encapsulated rejuvenator and induction heating have been proposed, demonstrated in the laboratory, and gradually evaluated in field application. This paper looks into the synergy effect of the above two technologies, where induction heating serves as the asphalt damage repair mechanism, requiring just 2 min heating time and encapsulated rejuvenator will replenish (rejuvenate) aged asphalt binder and reinstate bitumen’s healing ability. Moreover, the increased temperature from induction heating could in turn accelerate the diffusion process of rejuvenator into aged …


The Scaling Limit Of The Membrane Model, Alessandra Cipriani, Biltu Dan, Rajat Subhra Hazra Jan 2019

The Scaling Limit Of The Membrane Model, Alessandra Cipriani, Biltu Dan, Rajat Subhra Hazra

Journal Articles

On the integer lattice, we consider the discrete membrane model, a random interface in which the field has Laplacian interaction. We prove that, under appropriate rescaling, the discrete membrane model converges to the continuum membrane model in d ≥ 2. Namely, it is shown that the scaling limit in d = 2, 3 is a Holder continuous random field, while in d ≥ 4 the membrane model converges to a random distribution. As a by-product of the proof in d = 2, 3, we obtain the scaling limit of the maximum. This work complements the analogous results of Caravenna and …


Evaluation Of Deformable Posts In The Zoi And Rigid Posts In Stiff Soil, Thomas Ammon Dec 2018

Evaluation Of Deformable Posts In The Zoi And Rigid Posts In Stiff Soil, Thomas Ammon

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Debris fences are commonly used by states, in conjunction with a concrete parapet, to protect railway tracks. Their use limits the intrusion of debris that could damage tracks or clutter rail lines. Due to a lack of previously crash-tested systems, the safety performance of such designs are largely unknown. The Iowa Department of Transportation (DOT) desired that researchers at the Midwest Roadside Safety Facility (MwRSF) design a crashworthy debris fence mounted on top of a concrete parapet to meet the Manual for Assessing Safety Hardware (MASH) TL-3 crash test conditions. Part 1 of this thesis details the literature review and …


Toward Building Resilient, Sustainable, And Smart Infrastructure In The 21st Century, Aly Mousaad Aly Nov 2018

Toward Building Resilient, Sustainable, And Smart Infrastructure In The 21st Century, Aly Mousaad Aly

Faculty Publications

In recent years, as a result of significant climate change, stringent windstorms are becoming more frequent than before. Given the threat that windstorms bring to people and property, wind/structural engineering research is imperative to improve the resilience of existing and new infrastructure, for community safety and assets protection. The Windstorm Impact, Science and Engineering (WISE) research program at Louisiana State University (LSU) focuses on creating new knowledge applicable to the mitigation of existing and new infrastructure, to survive and perform optimally under natural hazards. To achieve our research goals, we address two imperious challenges: (i) characterization of realistic wind forces …


Effect Of Moment Gradient And Load Height With Respect To Centroid On The Reliability Of Wide Flange Steel Beams Subject To Elastic Lateral Torsional Buckling, Christopher D. Eamon, Alexander W. Lamb, Kapil Patki Aug 2017

Effect Of Moment Gradient And Load Height With Respect To Centroid On The Reliability Of Wide Flange Steel Beams Subject To Elastic Lateral Torsional Buckling, Christopher D. Eamon, Alexander W. Lamb, Kapil Patki

Civil and Environmental Engineering Faculty Research Publications

The reliability of doubly-symmetric wide flange steel beams designed to the AISC Specification for Structural Steel Buildings subjected to elastic lateral torsional buckling was evaluated when considering variation in moment gradient and load height. The analysis considers continuous loads on spans subjected to various end moments with supports that are torsionally fixed and laterally supported, without additional intermediate restraints. Dead load, occupancy live load, and beam resistance random variables were considered. Beam lateral torsional buckling resistance was evaluated from numerical solution of a fundamental differential equation that accounts for the effect of moment gradient and load height. In some cases, …


Collapse Resistance Of Moment Resisting Frame And Shear Wall Rc Structural Systems Exposed To Blast, Alaa I. Chehab, Christopher D. Eamon, Joshua Griffin Oct 2016

Collapse Resistance Of Moment Resisting Frame And Shear Wall Rc Structural Systems Exposed To Blast, Alaa I. Chehab, Christopher D. Eamon, Joshua Griffin

Civil and Environmental Engineering Faculty Research Publications

Various characteristics of a structure influence its response when subjected to a blast load. This has important implications for survivability and resistance to progressive collapse. In this study, the effect of the type of lateral load resisting system on reinforced concrete building resistance to progressive collapse when exposed to blast load is examined. Fourteen different reinforced concrete structures were considered for analysis, with five structures designed as moment resisting frames and nine designed as shear walls systems. Buildings with 3, 6, and 10 stories with 3, 4, and 5-bay symmetric configurations were considered. The structures were exposed to external and …


Evaluation Of Alternative Implementation Methods Of Failure Sampling Approach For Structural Reliability Analysis, Kapil Patki, Christopher D. Eamon Apr 2016

Evaluation Of Alternative Implementation Methods Of Failure Sampling Approach For Structural Reliability Analysis, Kapil Patki, Christopher D. Eamon

Civil and Environmental Engineering Faculty Research Publications

In this paper, several alternative approaches are used to implement the failure sampling method for structural reliability analysis and are evaluated for effectiveness. Although no theoretical limitation exists as to the types of problems that failure sampling can solve, the method is most competitive for problems that cannot be accurately solved with reliability index-based approaches and for which simulation is needed. These problems tend to have non-smooth limit state boundaries or are otherwise highly nonlinear. Results from numerical integration and three extrapolation approaches using the generalized lambda distribution, Johnson's distribution, and generalized extreme value distribution are compared. A variety of …


Design Live Load Factor Calibration For Michigan Highway Bridges, Christopher D. Eamon, Valid Kamjoo, Kazuhiko Shinki Feb 2016

Design Live Load Factor Calibration For Michigan Highway Bridges, Christopher D. Eamon, Valid Kamjoo, Kazuhiko Shinki

Civil and Environmental Engineering Faculty Research Publications

In this study, a reliability-based calibration of live load factors for bridge design specific to the State of Michigan was conducted. Two years of high frequency WIM data from 20 representative state-wide sites were analyzed, and load effects were generated for bridge spans from 6 to 122 m (20 to 400 ft), considering simple and continuous moments and shears, as well as single lane and two lane effects. Seventy-five year statistics for maximum live load were then estimated with probabilistic projection. Bridge girders considered for the calibration included composite steel, prestressed concrete, side-by-side and spread box beams, as well as …


Field Tests Of Two Prestressed Concrete Girder Bridges For Live Load Distribution And Moment Continuity, Christopher D. Eamon, Alaa Chehab, Gustavo Parra-Montesinos Jan 2016

Field Tests Of Two Prestressed Concrete Girder Bridges For Live Load Distribution And Moment Continuity, Christopher D. Eamon, Alaa Chehab, Gustavo Parra-Montesinos

Civil and Environmental Engineering Faculty Research Publications

Two similar bridges constructed with a live load continuous connection were tested for live load distribution and joint continuity. Girder distribution factors (GDFs) were compared to AASHTO equivalent values. For positive moments on all girders as for negative moments on interior girders, results using AASHTO equivalent GDFs were found to be generally conservative. However, for negative moments on exterior girders, test results exceeded AASHTO values, with 2-lane results significantly so. GDF results were verified with a FEA model, which produced similar behavior to the field tests. With respect to joint continuity, it is estimated that a simple span would produce …


In-Field Fuel Use And Load States Of Agricultural Field Machinery, Santosh Pitla, Joe D. Luck, Jared Werner, Nannan Lin, Scott A. Shearer Jan 2016

In-Field Fuel Use And Load States Of Agricultural Field Machinery, Santosh Pitla, Joe D. Luck, Jared Werner, Nannan Lin, Scott A. Shearer

Biological Systems Engineering: Papers and Publications

The ability to define in-field tractor load states offers the potential to better specify and characterize fuel consumption rate for various field operations. For the same field operation, the tractor experiences diverse load demands and corresponding fuel use rates as it maneuvers through straight passes, turns, suspended operation for adjustments, repair and maintenance, and biomass or other material transfer operations. It is challenging to determine the actual fuel rate and load states of agricultural machinery using force prediction models, and hence, some form of in-field data acquisition capability is required. Controller Area Networks (CAN) available on the current model tractors …


Inter-Row Robot Navigation Using 1d Ranging Sensors, Tyler A. Troyer, Santosh Pitla, Ethan Nutter Jan 2016

Inter-Row Robot Navigation Using 1d Ranging Sensors, Tyler A. Troyer, Santosh Pitla, Ethan Nutter

Biological Systems Engineering: Papers and Publications

In this paper a fuzzy logic navigation controller for an inter-row agricultural robot is developed and evaluated in laboratory settings. The controller receives input from one-dimensional (1D) ranging sensors on the robotic platform, and operated on ten fuzzy rules for basic row-following behavior. The control system was implemented on basic hardware for proof of concept and operated on a commonly available microcontroller development platform and open source software libraries. The robot platform used for experimentation was a small tracked vehicle with differential steering control. Fuzzy inferencing and defuzzification, step response and cross track error were obtained from the test conducted …


Influence Of Spatial Variations Of Railroad Track Stiffness And Material Inclusions On Fatigue Life, Celestin Nkundineza Jan 2015

Influence Of Spatial Variations Of Railroad Track Stiffness And Material Inclusions On Fatigue Life, Celestin Nkundineza

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Railroad transportation is very important for economic growth and effective maintenance is one critical factor for its economic sustainability. The high repetitive forces from a moving railcar induce cyclic stresses that lead to rail bending and potential deterioration due to fatigue crack initiation and propagation. Previous research for prediction of fatigue life has been done under the assumptions of a uniform track bed and a homogeneous rail. However the spatial variation of the track stiffness is expected to increase the maximum stresses in the rail and, therefore, accelerate the fatigue process. The research described in this dissertation is focused on …


Load Path Uncertainty In A Wood Structure And The Effect On Structural Reliability, Wenqi Wang, Christopher D. Eamon Nov 2013

Load Path Uncertainty In A Wood Structure And The Effect On Structural Reliability, Wenqi Wang, Christopher D. Eamon

Civil and Environmental Engineering Faculty Research Publications

The roof truss bearing points of a light-framed wood house were instrumented with load cells. It was found that under dead load alone, symmetric and theoretically identical truss reactions have significant variation. A similar degree of reaction discrepancy was found under the application of uplift pressures caused by hurricane winds. Analysis revealed that the majority of this discrepancy is caused by inherent uncertainties in load path. Although uncertainties in load magnitude and material resistance are accounted for in design by use of appropriate load and resistance factors, load path is generally taken to be deterministic. In this study, load path …


Reliability Analysis Of Reinforced Concrete Columns Exposed To Fire, Christopher D. Eamon, Elin A. Jensen Nov 2013

Reliability Analysis Of Reinforced Concrete Columns Exposed To Fire, Christopher D. Eamon, Elin A. Jensen

Civil and Environmental Engineering Faculty Research Publications

A reliability analysis is conducted on reinforced concrete columns subjected to fire load. From an evaluation of load frequency of occurrence, load random variables are taken to be dead load, sustained live load, and fire temperature. Resistance is developed for axial capacity, with random variables taken as steel yield strength, concrete compressive strength, placement of reinforcement, and section width and height. A rational interaction model based on the Rankine approach is used to estimate column capacity as a function of fire exposure time. Various factors were considered in the analysis such as fire type, load ratio, reinforcement ratio, cover, concrete …


Reliability-Based Design Optimization Of Concrete Flexural Members Reinforced With Ductile Frp Bars, Bashar Behnam, Christopher D. Eamon Jun 2013

Reliability-Based Design Optimization Of Concrete Flexural Members Reinforced With Ductile Frp Bars, Bashar Behnam, Christopher D. Eamon

Civil and Environmental Engineering Faculty Research Publications

In recent years, ductile hybrid FRP (DHFRP) bars have been developed for use as tensile reinforcement. However, initial material costs regain high, and it is difficult to simultaneously meet strength, stiffness, ductility, and reliability demands. In this study, a reliability-based design optimization (RBDO) is conducted to determine minimum cost DHFRP bar configurations while enforcing essential constraints. Applications for bridge decks and building beams are considered, with 2, 3, and 4-material bars. It was found that optimal bar configuration has little variation for the different applications, and that overall optimized bar cost decreased as the number of bar materials increased.


Analysis Of Alternative Ductile Fiber-Reinforced Polymer Reinforcing Bar Concepts, Bashar Behnam, Christopher D. Eamon Mar 2013

Analysis Of Alternative Ductile Fiber-Reinforced Polymer Reinforcing Bar Concepts, Bashar Behnam, Christopher D. Eamon

Civil and Environmental Engineering Faculty Research Publications

Steel-reinforced concrete structural components are often associated with significant maintenance costs as a result of reinforcement corrosion. To mitigate this problem, fiber-reinforced polymer (FRP) bars have been used in place of traditional steel reinforcement for some applications. The non-ductile response of typical FRP bars is a concern, however. To overcome this problem, hybrid ductile FRP (HDFRP) bars have been developed for use in concrete flexural members with resulting ductility indices similar to sections reinforced with steel. In this study, five different HDFRP bar concepts are analyzed and compared in terms of ductility, stiffness, and relative cost. Of primary interest is …


Resistance Factors For Ductile Frp-Reinforced Concrete Flexural Members, Bashar Behnam, Christopher D. Eamon Jan 2013

Resistance Factors For Ductile Frp-Reinforced Concrete Flexural Members, Bashar Behnam, Christopher D. Eamon

Civil and Environmental Engineering Faculty Research Publications

To prevent damage caused by corroding reinforcement, fiber reinforced polymer (FRP) reinforcing bars have been used in place of steel in a relatively small but increasing number of structures in the civil infrastructure. A concern with the use of traditional FRP bars, however, is the resulting lack of ductility. This problem has been overcome with the development of a new generation of composite reinforcement, ductile hybrid FRP (DHFRP) bars. However, standards that address the design of DHFRP bars are unavailable, and appropriate resistance factors for the use of DHFRP reinforcement are unknown. In this study, a reliability analysis is conducted …


Reliability Analysis Of Rc Beams Exposed To Fire, Christopher D. Eamon, Elin A. Jensen Jan 2013

Reliability Analysis Of Rc Beams Exposed To Fire, Christopher D. Eamon, Elin A. Jensen

Civil and Environmental Engineering Faculty Research Publications

A procedure for conducting reliability analysis of reinforced concrete beams subjected to a fire load is presented. This involves identifying relevant load combinations, specifying critical load and resistance random variables, and establishing a high-temperature performance model for beam capacity. Based on the procedure, an initial reliability analysis is conducted using currently available data. Significant load random variables are taken to be dead load, sustained live load, and fire temperature. Resistance is in terms of moment capacity, with random variables taken as steel yield strength, concrete compressive strength, placement of reinforcement, beam width, and thermal diffusivity. A semi-empirical model is used …


Life-Cycle Cost Analysis Of Alternative Reinforcement Materials For Bridge Superstructures Considering Cost And Maintenance Uncertainties, Christopher D. Eamon, Elin A. Jensen, Nabil F. Grace, Xiuwei Shi Mar 2012

Life-Cycle Cost Analysis Of Alternative Reinforcement Materials For Bridge Superstructures Considering Cost And Maintenance Uncertainties, Christopher D. Eamon, Elin A. Jensen, Nabil F. Grace, Xiuwei Shi

Civil and Environmental Engineering Faculty Research Publications

A life cycle cost analysis (LCCA) was conducted on prestressed concrete bridges using carbon fiber reinforced polymer (CFRP) bars and strands. Traditional reinforcement materials of uncoated steel with cathodic protection and epoxy-coated steel were also considered for comparison. A series of deterministic LCCAs were first conducted to identify a range of expected cost outcomes for different bridge spans and traffic volumes. Then, a probabilistic LCCA was conducted on selected structures that included activity timing and cost random variables. It was found that although more expensive initially, the use of CFRP reinforcement has the potential to achieve significant reductions in life …


Reliability Estimation Of Complex Numerical Problems Using Modified Conditional Expectation Method, Christopher D. Eamon, Bulakorn Charumas Oct 2010

Reliability Estimation Of Complex Numerical Problems Using Modified Conditional Expectation Method, Christopher D. Eamon, Bulakorn Charumas

Civil and Environmental Engineering Faculty Research Publications

A simulation-based structural reliability analysis method is presented. It is intended as an alternate approach to estimate reliability for problems for which most-probable point of failure methods fail and when computational resources are limited. The proposed method combines conditional expectation and estimating the PDF or CDF of a selected portion of the limit state. In the proposed approach, complex limit state functions are simplified to two random variable problems. The success of the simplification depends on the quality of the CDF estimate. Results indicate that the method may provide accurate and efficient solutions for some difficult reliability problems.


Studies Of Dynamic Crack Propagation And Crack Branching With Peridynamics, Youn Doh Ha Ph.D., Florin Bobaru Ph.D. Jan 2010

Studies Of Dynamic Crack Propagation And Crack Branching With Peridynamics, Youn Doh Ha Ph.D., Florin Bobaru Ph.D.

Department of Engineering Mechanics: Faculty Publications

In this paper we discuss the peridynamic analysis of dynamic crack branching in brittle materials and show results of convergence studies under uniform grid refinement (m-convergence) and under decreasing the peridynamic horizon (δ-convergence). Comparisons with experimentally obtained values are made for the crack-tip propagation speed with three different peridynamic horizons.We also analyze the influence of the particular shape of themicro-modulus function and of different materials (Duran 50 glass and soda-lime glass) on the crack propagation behavior. We show that the peridynamic solution for this problem captures all the main features, observed experimentally, of dynamic crack propagation and branching, as well …


Rail Short-Wavelength Irregularity Identification Based On Wheel-Rail Impact Response Measurements And Simulations, Y. Q. Sun, C. Cole, M. Mcclanachan, A. Wilson, S. Kaewunruen, M. B. Kerr Jun 2009

Rail Short-Wavelength Irregularity Identification Based On Wheel-Rail Impact Response Measurements And Simulations, Y. Q. Sun, C. Cole, M. Mcclanachan, A. Wilson, S. Kaewunruen, M. B. Kerr

Faculty of Engineering - Papers (Archive)

Long and short-wavelength dip defects unavoidably exist on railway track top surface. Several manual measurement methods and AK track measurement car were used to measure and to identify these types of defects in a selected track section. The paper considers rail dip irregularities in detail when measured, the dip can be considered as two components. The first one is the large, long dip profile, which can be measured by the survey leveling. The other is a small short dip profile, which is superimposed on the large profile and can be measured using the dip gauge. The corresponding measurement and processed …


College Of Engineering Senior Design Competition Spring 2009, University Of Nevada, Las Vegas May 2009

College Of Engineering Senior Design Competition Spring 2009, University Of Nevada, Las Vegas

Fred and Harriet Cox Senior Design Competition Projects

Part of every UNLV engineering student’s academic experience, the senior design project stimulates engineering innovation and entrepreneurship. Each student in their senior year chooses, plans, designs, and prototypes a product in this required element of the curriculum. A capstone to the student’s educational career, the senior design project encourages the student to use everything learned in the engineering program to create a practical, real world solution to an engineering challenge.

The senior design competition helps to focus the senior students in increasing the quality and potential for commercial application for their design projects. Judges from local industry evaluate the projects …


Integrated Reliability And Sizing Optimization Of A Large Composite Structure, Christopher D. Eamon, Masoud Rais-Rohani Apr 2009

Integrated Reliability And Sizing Optimization Of A Large Composite Structure, Christopher D. Eamon, Masoud Rais-Rohani

Civil and Environmental Engineering Faculty Research Publications

In this paper, we present the application of probabilistic design modeling and reliability-based design optimization (RBDO) methodology to the sizing optimization of a composite advanced submarine sail structure under parametric uncertainty. With the help of probabilistic sensitivity analysis, the influence of individual random variables on each structural failure mode is examined, and the critical modes are treated as probabilistic design constraints under consistent lower bounds on the corresponding reliability indices. Whereas the failure modes are applied to structural components in the solution of the RBDO problem, the overall system reliability is also evaluated as a post-optimization step. The results indicate …


Dynamic Responses Of Marine Risers/Pipes Transporting Fluid Subject To Top End Excitations, J. Leklong, S. Chucheepsakul, S. Kaewunruen Nov 2008

Dynamic Responses Of Marine Risers/Pipes Transporting Fluid Subject To Top End Excitations, J. Leklong, S. Chucheepsakul, S. Kaewunruen

Faculty of Engineering - Papers (Archive)

This paper deals with the dynamic responses to top end excitation of marine risers/pipes conveying internal fluid. The marine riser is often used as a flexible link between undersea bore head and subsurface offshore platform. The tidal waves and the changes of sea level consistently excite its top end connected to a floating vessel. In order to carry out the performance-based design of the marine risers, the evaluation of their dynamic responses to top end excitations is imperative. In this study, the marine riser is simulated using twodimensional beam elements. Energy functional of the marine risers conveying fluids is derived …


Reliability Analysis Of Plank Decks, Andrzej S. Nowak, Christopher D. Eamon Sep 2008

Reliability Analysis Of Plank Decks, Andrzej S. Nowak, Christopher D. Eamon

Civil and Environmental Engineering Faculty Research Publications

The objective of this study is to summarize the load and resistance criteria for highway bridge plank decks, and to estimate the reliability of plank decks designed by AASHTO Code. Both transverse and longitudinal planks for a variety of typical stringer spacings and plank sizes are considered. Truck traffic load data is based on the model used to calibrate the 1994 AASHTO LRFD Code. However, for plank decks, wheel load rather than whole vehicle weight is most important, and these statistics are developed for this study. For wood planks, dead load and dynamic load are not significant. The limit state …


Comparison Of Roadside Crash Injury Metrics Using Event Data Recorders, Doug Gabauer, Hampton C. Gabler Jan 2008

Comparison Of Roadside Crash Injury Metrics Using Event Data Recorders, Doug Gabauer, Hampton C. Gabler

Faculty Journal Articles

The occupant impact velocity (OIV) and acceleration severity index (ASI) are competing measures of crash severity used to assess occupant injury risk in full-scale crash tests involving roadside safety hardware, e.g. guardrail. Delta-V, or the maximum change in vehicle velocity, is the traditional metric of crash severity for real world crashes. This study compares the ability of the OIV, ASI, and delta-V to discriminate between serious and non-serious occupant injury in real world frontal collisions. Vehicle kinematics data from event data recorders (EDRs) were matched with detailed occupant injury information for 180 real world crashes. Cumulative probability of injury risk …


Reliability Of Concrete Masonry Unit Walls Subjected To Explosive Loads, Christopher D. Eamon Jul 2007

Reliability Of Concrete Masonry Unit Walls Subjected To Explosive Loads, Christopher D. Eamon

Civil and Environmental Engineering Faculty Research Publications

This study discuses the development of a procedure that can be used to assess the reliability of concrete masonry unit infill walls subjected to personnel-delivered blast loads. Consideration is given to maintain reasonable computational effort for both the structural analysis and reliability models. Blast load and wall resistance models are developed based on experimental and analytical data, and resistance is evaluated with a large strain, large displacement transient dynamic finite element analysis. A sensitivity analysis is conducted to identify significant random variables and a reliability analysis conducted with a feasible level of computational effort. Reliability indices are estimated for two …


Observations Of Structural Damage Caused By Hurricane Katrina On The Mississippi Gulf Coast, Christopher D. Eamon, Patrick Fitzpatrick, Dennis D. Truax Apr 2007

Observations Of Structural Damage Caused By Hurricane Katrina On The Mississippi Gulf Coast, Christopher D. Eamon, Patrick Fitzpatrick, Dennis D. Truax

Civil and Environmental Engineering Faculty Research Publications

The loads associated with Hurricane Katrina led to the destruction or severe damage of approximately 130,000 homes and over 200 deaths in the state of Mississippi. This paper discusses the results of a field inspection of structural damage along the state’s Gulf Coast area caused by this hurricane. It was found that reinforced concrete, steel frame, and heavy timber structures generally performed well, with minimal structural damage. Precast concrete, light frame wood, and bridge structures generally performed poorly. Non-structural components of all building types, in particular facades and interior partitions subjected to storm surge, were typically destroyed. For various structures, …