Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Semiconductor and Optical Materials

PDF

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 11 of 11

Full-Text Articles in Applied Mechanics

Molecular Dynamics Simulation On Molybdenum Disulfide: Thermal-Mechanical Properties And Phase Transitions Under External Loading, Mahabubur Rahman May 2023

Molecular Dynamics Simulation On Molybdenum Disulfide: Thermal-Mechanical Properties And Phase Transitions Under External Loading, Mahabubur Rahman

All Dissertations

Due to their remarkable properties, transition metal dichalcogenides (TMDs) have received much scientific interest throughout the past decade. Two layers of chalcogen atoms (S, Se, Te) sandwich a layer of transition metal atoms (Mo, W, Ta) to form the three-atom thick unit cell in TMDs. The interaction between TMD "single layers" is mediated by neighboring chalcogen planes and bonded by Van der Waals forces. Due to this weak out-of-plane interaction, bulk samples can be thinned down to a single layer by exfoliation. Among the TMDs, Molybdenum Disulfide (MoS2) shows promise in the field of electronics, optics, and sensing …


Studying The Effects Of Initial Crack Angle On The Crack Propagation In Graphene Nano-Ribbon Through Molecular Dynamics Simulations, Vijay Kumar Pathak Jan 2021

Studying The Effects Of Initial Crack Angle On The Crack Propagation In Graphene Nano-Ribbon Through Molecular Dynamics Simulations, Vijay Kumar Pathak

Dissertations, Master's Theses and Master's Reports

In this research, we have worked on the brittle fracture of graphene nano-ribbon to explore the behavior of crack propagation at different crack angles. We have performed classical Molecular Dynamics simulations using LAMMPS at ten different crack angles between 0 degrees and 45 degrees, in an increment of 5 degrees to observe the parameters that dominate the crack path. The graphene nanoribbon is loaded in the zigzag direction by pulling it in the armchair direction with a pre-existing crack in the center. We have used OVITO for the visualization of the simulation. AIREBO potential is employed in this work because …


Design, Fabrication, And Reliability Effects Of Additively Manufactured First Level Compliant Interconnects For Microelectronics Application, Tumininu David Olatunji Dec 2020

Design, Fabrication, And Reliability Effects Of Additively Manufactured First Level Compliant Interconnects For Microelectronics Application, Tumininu David Olatunji

Graduate Theses and Dissertations

Semiconductor packaging and development is greatly dependent on the magnitude of interconnect and on-chip stress that ultimately limits the reliability of electronic components. Thermomechanical related strains occur because of the coefficient of thermal expansion mismatch from different conjoined materials being assembled to manufacture a device. To curb the effect of thermal expansion mismatch between conjoined parts, studies have been done in integrating compliant structures between dies, solder balls, and substrates. Initial studies have enabled the design and manufacturing of these structures using a photolithography approach which involves a high number of fabrication steps depending on the complexity of the structures …


The Development Of All Solid-State Optical Cryo-Cooler, Junwei Meng May 2020

The Development Of All Solid-State Optical Cryo-Cooler, Junwei Meng

Optical Science and Engineering ETDs

This dissertation describes the development of an all solid-state optical cryo-cooler. Crystals of 10% wt. ytterbium-doped yttrium lithium fluoride (Yb3+:YLF) are used to cool an infrared HgCdTe sensor payload to an absolute temperature below 135 K, equivalent to delta T equal 138 K below ambient. This record level of cooling is accomplished with a single stage, in a completely vibration-free environment, with a corresponding cooling power of 190 mW. This milestone is made possible by the design and fabrication of an undoped YLF thermal link that efficiently shields the payload with a non-right angle kink from intense anti-Stokes …


Quantitative Peel Test For Thin Films/Layers Based On A Coupled Parametric And Statistical Study, Maysam Rezaee, Li Chih Tsai, Muhammad Istiaque Haider, Armin Yazdi, Ehsan Sanatizadeh, Nathan P. Salowitz Dec 2019

Quantitative Peel Test For Thin Films/Layers Based On A Coupled Parametric And Statistical Study, Maysam Rezaee, Li Chih Tsai, Muhammad Istiaque Haider, Armin Yazdi, Ehsan Sanatizadeh, Nathan P. Salowitz

Mechanical Engineering Faculty Articles

The adhesion strength of thin films is critical to the durability of micro and nanofabricated devices. However, current testing methods are imprecise and do not produce quantitative results necessary for design specifications. The most common testing methods involve the manual application and removal of unspecified tape. This overcome many of the challenges of connecting to thin films to test their adhesion properties but different tapes, variation in manual application, and poorly controlled removal of tape can result in wide variation in resultant forces. Furthermore, the most common tests result in a qualitative ranking of film survival, not a measurement with …


Effect Of The Nonlinear Material Viscosity On The Performance Of Dielectric Elastomer Transducers, Yuanping Li Jun 2019

Effect Of The Nonlinear Material Viscosity On The Performance Of Dielectric Elastomer Transducers, Yuanping Li

Electronic Thesis and Dissertation Repository

As a typical type of soft electroactive materials, dielectric elastomers (DEs) are capable of producing large voltage-induced deformation, which makes them desirable materials for a variety of applications in transduction technology, including tunable oscillators, resonators, biomimetics and energy harvesters. The dynamic and energy harvesting performance of such DE-based devices is strongly affected not only by multiple failure modes such as electrical breakdown, electromechanical instability, loss-of-tension and fatigue, but also by their material viscoelasticity. Moreover, as suggested by experiments and theoretical studies, DEs possess nonlinear relaxation processes, which makes modeling of the performance of DE-based devices more challenging.

In this thesis, …


Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin Jun 2019

Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin

Honors Theses

Structural health monitoring has the potential to allow composite structures to be more reliable and safer, then by using more traditional damage assessment techniques. Structural health monitoring (SHM) utilizes individual sensor units that are placed throughout the load bearing sections of a structure and gather data that is used for stress analysis and damage detection. Statistical time based algorithms are used to analyze collected data and determine both damage size and probable location from within the structure. While traditional calculations and life span analysis can be done for structures made of isotropic materials such as steel or other metals, composites …


Phase Transitions In Monochalcogenide Monolayers, Mehrshad Mehboudi May 2018

Phase Transitions In Monochalcogenide Monolayers, Mehrshad Mehboudi

Graduate Theses and Dissertations

Since discovery of graphene in 2004 as a truly one-atom-thick material with extraordinary mechanical and electronic properties, researchers successfully predicted and synthesized many other two-dimensional materials such as transition metal dichalcogenides (TMDCs) and monochalcogenide monolayers (MMs). Graphene has a non-degenerate structural ground state that is key to its stability at room temperature. However, group IV monochalcogenides such as monolayers of SnSe, and GeSe have a fourfold degenerate ground state. This degeneracy in ground state can lead to structural instability, disorder, and phase transition in finite temperature. The energy that is required to overcome from one degenerate ground state to another …


Acoustic Manipulation And Alignment Of Particles For Applications In Separation, Micro-Templating, And Device Fabrication, Kamran Moradi Mar 2015

Acoustic Manipulation And Alignment Of Particles For Applications In Separation, Micro-Templating, And Device Fabrication, Kamran Moradi

FIU Electronic Theses and Dissertations

This dissertation studies the manipulation of particles using acoustic stimulation for applications in microfluidics and templating of devices. The term particle is used here to denote any solid, liquid or gaseous material that has properties, which are distinct from the fluid in which it is suspended. Manipulation means to take over the movements of the particles and to position them in specified locations.

Using devices, microfabricated out of silicon, the behavior of particles under the acoustic stimulation was studied with the main purpose of aligning the particles at either low-pressure zones, known as the nodes or high-pressure zones, known as …


Highly Transparent, Self-Cleaning, And Antireflective Nanoparticle Coatings, Corey Seth Thompson Dec 2014

Highly Transparent, Self-Cleaning, And Antireflective Nanoparticle Coatings, Corey Seth Thompson

Graduate Theses and Dissertations

Current solar panel technologies require a sheet of glass to serve as both mechanical support and to protect the cells from the environment. The reflection from the glass sheet can reflect up to 8% of the incident light, reducing the power output of the panel. Antireflective coatings can be used to allow more light to enter the panel to be converted into usable electricity. However, no solid thin film materials exhibit a low enough index of refraction to serve as antireflective coatings for common solar glass. The main goal of this research was to investigate the self-cleaning, antifogging, and antireflective …


Evaluation Of Photodiode Arrays For Use In Rocket Plume Monitoring And Diagnostics, Dallas Snider, M. Keith Hudson, Robert B. Shanks, Reagan Cole Jan 1994

Evaluation Of Photodiode Arrays For Use In Rocket Plume Monitoring And Diagnostics, Dallas Snider, M. Keith Hudson, Robert B. Shanks, Reagan Cole

Journal of the Arkansas Academy of Science

The spectroscopic analysis of plume emissions is a non-intrusive method which has been used to check for fatigue and possible damage throughout the pumps and other mechanisms in a rocket motor or engine. These components are made of various alloys. Knowing the composition of the alloys and for which parts they are used, one can potentially determine from the emissions in the plume which component is failing. Currently, Optical Multichannel Analyzer systems are being used which utilize charge coupled devices, cost tens of thousands of dollars, are somewhat delicate, and usually require cooling. We have developed two rugged instruments using …