Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Applied Mechanics

Synthesis And Formation Mechanism Of Cuins2 Nanocrystals With A Tunable Phase, Chao Yu, Linlin Zhang, Long Tian, Dan Liu, Fanglin Chen, Cheng Wang Nov 2014

Synthesis And Formation Mechanism Of Cuins2 Nanocrystals With A Tunable Phase, Chao Yu, Linlin Zhang, Long Tian, Dan Liu, Fanglin Chen, Cheng Wang

Faculty Publications

Chalcopyrite CuInS2 (CIS) hierarchical structures composed of nanoflakes with a thickness of about 5 nm were synthesized by a facial solvothermal method. The thermodynamically metastable wurtzite phase CIS would be obtained by using InCl3 instead of In(NO3)3 as In precursor. The effects of the In precursor and the volume of concentrated HCl aqueous solution on the phases and morphologies of CIS nanocrystals have been systematically investigated. Experimental results indicated that the obtained phases of CIS nanocrystals were predominantly determined by precursor-induced intermediate products. The photocatalytic properties of chalcopyrite and wurtzite CIS in visible-light-driven degradation of …


Enhanced Nucleate Boiling On Horizontal Hydrophobic-Hydrophilic Carbon Nanotube Coatings, Xianming Dai, Xinyu Huang, Fanghao Yang, Xiaodong Li, Joshua Sightler, Yingchao Yang, Chen Li Apr 2013

Enhanced Nucleate Boiling On Horizontal Hydrophobic-Hydrophilic Carbon Nanotube Coatings, Xianming Dai, Xinyu Huang, Fanghao Yang, Xiaodong Li, Joshua Sightler, Yingchao Yang, Chen Li

Faculty Publications

Ideal hydrophobic-hydrophilic composite cavities are highly desired to enhance nucleate boiling. However, it is challenging and costly to fabricate these types of cavities by conventional micro/nano fabrication techniques. In this study, a type of hydrophobic-hydrophilic composite interfaces were synthesized from functionalized multiwall carbon nanotubes by introducing hydrophilic functional groups on the pristine multiwall carbon nanotubes. This type of carbon nanotube enabled hydrophobic-hydrophilic composite interfaces were systematically characterized. Ideal cavities created by the interfaces were experimentally demonstrated to be the primary reason to substantially enhance nucleate boiling


). Size Dependency Of The Elastic Modulus Of Zno Nanowires: Surface Stress Effect, Guofeng Wang, Xiaodong Li Dec 2007

). Size Dependency Of The Elastic Modulus Of Zno Nanowires: Surface Stress Effect, Guofeng Wang, Xiaodong Li

Faculty Publications

Relation between the elastic modulus and the diameter (D) of ZnOnanowires was elucidated using a model with the calculated ZnOsurface stresses as input. We predict for ZnOnanowires due to surface stress effect: (1) when D>20nm, the elastic modulus would be lower than the bulk modulus and decrease with the decreasing diameter, (2) when 20nm>D>2nm, the nanowires with a longer length and a wurtzite crystal structure could be mechanically unstable, and (3) when D<2nm, the elastic modulus would be higher than that of the bulk value and increase with a decrease in nanowire diameter.


Nanoindentation Of The A And C Domains In A Tetragonal Batio3 Single Crystal, Young-Bae Park, Matthew J. Dicken, Zhi-Hui Xu, Xiaodong Li Oct 2007

Nanoindentation Of The A And C Domains In A Tetragonal Batio3 Single Crystal, Young-Bae Park, Matthew J. Dicken, Zhi-Hui Xu, Xiaodong Li

Faculty Publications

Nanoindentation in conjunction with piezoresponse force microscopy was used to study domain switching and to measure the mechanical properties of individual ferroelectric domains in a tetragonal BaTiO3 single crystal. It was found that nanoindentation has induced local domain switching; the a and c domains of BaTiO3 have different elastic moduli but similar hardness.Nanoindentationmodulus mapping on the a and c domains further confirmed such difference in elasticity. Finite element modeling was used to simulate the von Mises stress and plastic strain profiles of the indentations on both a and c domains, which introduces a much higher stress level than …


Structural And Electrical Characterization Of A Novel Mixed Conductor: Ceo2 - Sm2O3 - Zro2 Solid Solution, W. Huang, P. Shuk, M. Greenblatt, M. Croft, Fanglin Chen, M. Liu Jan 2000

Structural And Electrical Characterization Of A Novel Mixed Conductor: Ceo2 - Sm2O3 - Zro2 Solid Solution, W. Huang, P. Shuk, M. Greenblatt, M. Croft, Fanglin Chen, M. Liu

Faculty Publications

solid solutions were synthesized for the first time by the hydrothermal method. The electrical properties of the solid solutions have been studied in air and under reducing conditions. Solid solutions with the fluorite structure were formed in all of the studied range of substitution after calcination at 1500°C. With increasing substitution up to 30 mol %, the electronic conductivity increases under a reducing atmosphere. The solid solution has good mixed electronic and ionic conductivity; the total conductivity is 0.42 S/cm at and 700°C with an estimated ionic conductivity of ca. .