Open Access. Powered by Scholars. Published by Universities.®

Metallurgy Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Additive Manufacturing

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 32

Full-Text Articles in Metallurgy

Improving Cast Steel Rail Coupler Fatigue Resistance Through Local Wire-Arc Additive Manufacturing, Andrew M. Bunge Jan 2024

Improving Cast Steel Rail Coupler Fatigue Resistance Through Local Wire-Arc Additive Manufacturing, Andrew M. Bunge

Dissertations, Master's Theses and Master's Reports

Every year, thousands of cast-steel railcar couplers suffer from corrosion-initiated fatigue cracking in similar areas of the coupler’s knuckle; between 2015 and 2018 about 90,000 knuckles were replaced, otherwise these couplers would have been at risk for unexpected failures. These types of couplers have been common in industrial use as early as 1932, hence it is desirable for a countermeasure to the fatigue cracking that does not involve significantly altering the geometry or casting process. Wire arc additive manufacturing (WAM) is a developing technology which boasts the ability to produce complex near-net-shape components; however, less attention has been paid to …


Cobalt Chromium In Biomedical Applications And The Development Of A Pspp Map, Nouralhouda Jamal Dec 2023

Cobalt Chromium In Biomedical Applications And The Development Of A Pspp Map, Nouralhouda Jamal

Bagley College of Engineering Publications and Scholarship

During the world wars, Cobalt-Chromium (Co-Cr) alloys gained prominence for their use in aircraft engine components, where they exhibited high temperature strength and durability. They are used in a wide range of industries due to their unique set of qualities, particularly strength, corrosion resistance, and biocompatibility. They have emerged as versatile materials with a broad spectrum of applications, from aerospace and automotive components to biomedical implants.

This paper presents a thorough analysis of its composition, processing techniques, microstructure, mechanical properties, and performance characteristics. The primary goal of this project is to develop a PSPP (Process, structure, properties, and performance) map …


An Investigation Into The Challenges Of Contemporary Additive Manufacturing: Insights Into The Metallurgical Response Of Materials And Relevant Solution, Huan Ding Nov 2023

An Investigation Into The Challenges Of Contemporary Additive Manufacturing: Insights Into The Metallurgical Response Of Materials And Relevant Solution, Huan Ding

LSU Doctoral Dissertations

Additive Manufacturing (AM) has gained attention in recent years due to its unique capabilities in the fabrication of complex parts. As with any new research, there is still a lack of sufficient understanding in the field of additive manufacturing, and further investigation is needed to solve existing problems. Ultimately, the aim is to enable the widespread use of AM components across various industries.

Chapter One provides a brief introduction to the background and current bottlenecks of additive manufacturing technology. Chapter two focuses on the development of high-strength 7075 aluminum alloy (Al7075) for Fused Deposition Modeling and Sintering (FDMS) technology. Al7075 …


Improving The Tensile Mechanical Properties Of Direct Energy Deposited (Ded) Inconel 718 Aircraft Components Using A Standard Heat Treatment, Spencer Vincent Flynn Jun 2023

Improving The Tensile Mechanical Properties Of Direct Energy Deposited (Ded) Inconel 718 Aircraft Components Using A Standard Heat Treatment, Spencer Vincent Flynn

Materials Engineering

This project aimed to improve the mechanical properties of as-printed additively manufactured Inconel 718 samples using a heat treatment usually used for cast and wrought Inconel 718. The mechanical properties sought to be optimized were yield strength, ultimate tensile strength, elongation, and reduction in area. The property goals were to match or exceed those of cast and heat treated Inconel 718. Wire-fed electron beam direct energy deposition (DED) was used to manufacture the samples, which were then heat treated using the AMS 5663 standard in an inert atmosphere. The samples were then tested in tension to obtain data on their …


A Study Of The Effect Of Machine Parameters On Defects Produced In Eos Additive Manufacturing Builds, Tina White Malone May 2023

A Study Of The Effect Of Machine Parameters On Defects Produced In Eos Additive Manufacturing Builds, Tina White Malone

Doctoral Dissertations

5Additive Manufacturing (AM) is defined in the American Society for Testing and Materials (ASTM) standard F2792 as “a process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing methodologies. It provides an advanced method for building complex geometries and parts for high performance with a significant cost savings. 55It’s advantages include the reduced need for tools and molds commonly used in manufacturing, a large reduction in wasted material, much shorter manufacturing cycles for the building of hardware, and its uniquely inherent ability to produce much more complex shapes. …


Al-Ce-Mn Solidification Phase Selection And Solid-State Phase Transformations, Kevin Dean Sisco May 2023

Al-Ce-Mn Solidification Phase Selection And Solid-State Phase Transformations, Kevin Dean Sisco

Doctoral Dissertations

The design of Al alloys has become an important topic in Additive Manufacturing (AM). The adoption of Al alloys to AM has been difficult because traditional alloys are prone to processing related defects such as solidification cracking. The Al-10Si-Mg alloy was initially adopted because of its resistance to solidification cracking. However, the Al-10Si-Mg alloy has reduced tensile properties especially at high temperatures, where the silicon phase coarsens readily. Therefore, efforts have been made to design new Al alloys that can take advantage of the AM processing. The goal of new alloys is to optimize based on rapid solidification conditions, while …


Characterization Of Virgin, Re-Used, And Oxygen-Reduced Copper Powders Processed By The Plasma Spheroidization Process, M. Hossein Sehhat, David Perez-Palomino, Connor Wiedemeier, Tristan Cullom, Joseph William Newkirk Jan 2023

Characterization Of Virgin, Re-Used, And Oxygen-Reduced Copper Powders Processed By The Plasma Spheroidization Process, M. Hossein Sehhat, David Perez-Palomino, Connor Wiedemeier, Tristan Cullom, Joseph William Newkirk

Materials Science and Engineering Faculty Research & Creative Works

Fabrication of parts with high mechanical properties heavily depend on the quality of powder deployed in the fabrication process. Copper powder in three different powder types were spheroidized using radio-frequency inductively coupled plasma (ICP) spheroidization process (TekSphero-15 system). The characterized powders include virgin powder as purchased from the powder manufacturer, powder used in electron beam powder bed fusion (EB-PBF) process, and reconditioned powder, which was used powder that underwent an oxygen-reduction treatment. The goal of spheroidizing these powder types was to evaluate the change in powder morphology, the possibility of enhancing the powder properties back to their as-received conditions, and …


Characterization Of Virgin, Re-Used, And Oxygen-Reduced Copper Powders Processed By The Plasma Spheroidization Process, M. Hossein Sehhat, David Perez-Palomino, Connor Wiedemeier, Tristan Cullom, Joseph William Newkirk Jan 2023

Characterization Of Virgin, Re-Used, And Oxygen-Reduced Copper Powders Processed By The Plasma Spheroidization Process, M. Hossein Sehhat, David Perez-Palomino, Connor Wiedemeier, Tristan Cullom, Joseph William Newkirk

Mathematics and Statistics Faculty Research & Creative Works

Fabrication of parts with high mechanical properties heavily depend on the quality of powder deployed in the fabrication process. Copper powder in three different powder types were spheroidized using radio-frequency inductively coupled plasma (ICP) spheroidization process (TekSphero-15 system). The characterized powders include virgin powder as purchased from the powder manufacturer, powder used in electron beam powder bed fusion (EB-PBF) process, and reconditioned powder, which was used powder that underwent an oxygen-reduction treatment. The goal of spheroidizing these powder types was to evaluate the change in powder morphology, the possibility of enhancing the powder properties back to their as-received conditions, and …


Characterization Of Virgin, Re-Used, And Oxygen-Reduced Copper Powders Processed By The Plasma Spheroidization Process, M. Hossein Sehhat, David Perez-Palomino, Connor Wiedemeier, Tristan Cullom, Joseph William Newkirk Jan 2023

Characterization Of Virgin, Re-Used, And Oxygen-Reduced Copper Powders Processed By The Plasma Spheroidization Process, M. Hossein Sehhat, David Perez-Palomino, Connor Wiedemeier, Tristan Cullom, Joseph William Newkirk

Materials Science and Engineering Faculty Research & Creative Works

Fabrication of parts with high mechanical properties heavily depend on the quality of powder deployed in the fabrication process. Copper powder in three different powder types were spheroidized using radio-frequency inductively coupled plasma (ICP) spheroidization process (TekSphero-15 system). The characterized powders include virgin powder as purchased from the powder manufacturer, powder used in electron beam powder bed fusion (EB-PBF) process, and reconditioned powder, which was used powder that underwent an oxygen-reduction treatment. The goal of spheroidizing these powder types was to evaluate the change in powder morphology, the possibility of enhancing the powder properties back to their as-received conditions, and …


Tini-Based Bi-Metallic Shape-Memory Alloy By Laser-Directed Energy Deposition, Yitao Chen, Cesar Ortiz Rios, Braden Mclain, Joseph William Newkirk, Frank W. Liou Jun 2022

Tini-Based Bi-Metallic Shape-Memory Alloy By Laser-Directed Energy Deposition, Yitao Chen, Cesar Ortiz Rios, Braden Mclain, Joseph William Newkirk, Frank W. Liou

Materials Science and Engineering Faculty Research & Creative Works

In this study, laser-directed energy deposition was applied to build a Ti-rich ternary Ti-Ni-Cu shape-memory alloy onto a TiNi shape-memory alloy substrate to realize the joining of the multifunctional bi-metallic shape-memory alloy structure. The cost-effective Ti, Ni, and Cu elemental powder blend was used for raw materials. Various material characterization approaches were applied to reveal different material properties in two sections. The as-fabricated Ti-Ni-Cu alloy microstructure has the TiNi phase as the matrix with Ti2Ni secondary precipitates. The hardness shows no high values indicating that the major phase is not hard intermetallics. A bonding strength of 569.1 MPa …


In-Situ Defect Detection Using Acoustic Vibration Monitoring For Additive Manufacturing Processes, Ali Harake Jun 2022

In-Situ Defect Detection Using Acoustic Vibration Monitoring For Additive Manufacturing Processes, Ali Harake

Master's Theses

The world of additive manufacturing revolves around speed and repeatability. Inherently, the process of 3D printing is plagued with variability that fluctuates with every material and parameter modification. Without proper qualification standards, processes can never become stable enough to produce parts that may be used in aerospace, medical, and construction industries. These industries rely on high quality metrics in order to protect the lives of those who may benefit from them. To establish trust in a process, all points of variation must be controlled and accounted for every part produced. In instances where even the best process controls are enacted, …


Development And Characterization Of Bound Metal Deposition Including Laser Ablation, Alexander J. Watson May 2022

Development And Characterization Of Bound Metal Deposition Including Laser Ablation, Alexander J. Watson

Electronic Theses and Dissertations

Bound Metal Deposition (BMD) is a novel metal additive manufacturing technology in which a metal powder-binder composite paste is layer-wise extruded to form a part, which is then debound and sintered into a solid metal part. Although promising, BMD suffers from shrinkage-induced warpage and an inability to produce fine length scale features. This research addresses these problems by: (1) characterizing warpage of planar parts, and (2) developing a novel laser ablated process to create fine length scale features. First, a 12-factor resolution IV fractional-factorial design of experiments (DOE) was conducted to determine the warpage of planar parts as a function …


Development Of Oxide Dispersion Strengthening (Ods) Alloys Powder For Additive Manufacturing, Changyu Ma Jan 2022

Development Of Oxide Dispersion Strengthening (Ods) Alloys Powder For Additive Manufacturing, Changyu Ma

Graduate Theses, Dissertations, and Problem Reports

Additive manufacturing (AM) fabricated oxide dispersion strengthened (ODS) alloys are given high expectations for critical structural components such as the first stage turbine blade for their excellent creep strength and oxidation resistance compared to superalloys. However, the powder feedstock processing is still an open question since current state-of-the-art processes are not capable of achieving ultrafine strengthening elements such as Y2O3 in powder which leads to agglomeration issues in as-consolidated alloys. In this research, the oxidation behavior and stability of ultrafine oxide in AM-printed alloys using mechanically alloyed powders were evaluated at 1100 oC. In addition, a …


A Study Of Reduced Activation Ferritic Martensitic Metal Core Wire For Wire Arc Additive Manufacturing, Alexander L. Reichenbach Jan 2022

A Study Of Reduced Activation Ferritic Martensitic Metal Core Wire For Wire Arc Additive Manufacturing, Alexander L. Reichenbach

Electronic Theses and Dissertations

This study seeks to determine the technical feasibility of fabricating reduced activation ferritic martensitic (RAFM) steel parts, using a wire arc additive manufacturing (WAAM) process. The WAAM process, manufactures a part by depositing layers of metal onto a substrate to build a large scale near net shape part. RAFM alloy steels are next generation steels designed to resist radiation effects in the radiation intense working environments, such as nuclear reactors. To achieve this, process development and testing to design the WAAM production process with the custom RAFM filler wire was carried out. Several welding waveform modes were tested, and it …


Assessing Mechanical Performance Of Dissimilar Steel Systems Made Via Wire-Arc Additive Manufacturing, Obed Daniel Acevedo Dec 2021

Assessing Mechanical Performance Of Dissimilar Steel Systems Made Via Wire-Arc Additive Manufacturing, Obed Daniel Acevedo

Masters Theses

Hot stamping is part of a specific type of metalworking procedure widely used in the automotive industry. This research seeks to help make hot stamp tooling component production more cost-effective by using large-scale additive manufacturing. Additive manufacturing can produce dissimilar steel components that can be more cost-effective and time-efficient and allow for complex geometries to be made. A dissimilar steel system consisting of 410 martensitic stainless steel and AWS ER70S-6 mild steel is proposed to make hot stamps, making them more cost-efficient. However, the material interface's mechanical behavior in 410SS-mild steel additively manufactured material systems is not well understood. This …


Laser Surface Treatment And Laser Powder Bed Fusion Additive Manufacturing Study Using Custom Designed 3d Printer And The Application Of Machine Learning In Materials Science, Hao Wen Aug 2021

Laser Surface Treatment And Laser Powder Bed Fusion Additive Manufacturing Study Using Custom Designed 3d Printer And The Application Of Machine Learning In Materials Science, Hao Wen

LSU Doctoral Dissertations

Selective Laser Melting (SLM) is a laser powder bed fusion (L-PBF) based additive manufacturing (AM) method, which uses a laser beam to melt the selected areas of the metal powder bed. A customized SLM 3D printer that can handle a small quantity of metal powders was built in the lab to achieve versatile research purposes. The hardware design, electrical diagrams, and software functions are introduced in Chapter 2. Several laser surface engineering and SLM experiments were conducted using this customized machine which showed the functionality of the machine and some prospective fields that this machine can be utilized. Chapter 3 …


Transients In Plastic Instabilities During Thermo-Mechanical Reversals In An Additively Manufactured Ti6al4v, Sabina C. Kumar Aug 2021

Transients In Plastic Instabilities During Thermo-Mechanical Reversals In An Additively Manufactured Ti6al4v, Sabina C. Kumar

Doctoral Dissertations

A complex interaction of process variables in an evolving geometry during Additive Manufacturing (AM), can bring about spatial and temporal transients of temperature and stress within each layer in a part. Although AM shares commonalities with conventional processing techniques such as casting, welding, and thermo-mechanical process, published literature has shown that the steady-state conditions are not strictly valid during AM process. Macro-scale fluctuations of thermal gradients (dT/dx: 103 to 107 K/m) combined with local changes in thermal expansion coefficients, crystallographic strains and localized stress-strain constitutive properties in conjunction with thermal cycles, can bring about a plastic strain gradient …


Metallurgical And Thermal Processing Investigation Of Additively Manufactured Superalloys Jbk-75 And Nasa-Hr-1, Allyse Birken, Derek Noel Jun 2021

Metallurgical And Thermal Processing Investigation Of Additively Manufactured Superalloys Jbk-75 And Nasa-Hr-1, Allyse Birken, Derek Noel

Materials Engineering

Aerojet Rocketdyne is investigating the use of directed energy deposition (DED), an additive manufacturing process, to reduce cost and lead time for manufacturing complex rocket engine components for their RS-25 engines. JBK-75 and NASA-HR-1, two Fe-Ni-base, age-hardenable (γ′) superalloys, are used for nozzle structural jackets and hot gas manifolds. Currently, these parts are produced using traditional forging or casting methods followed by intensive machining operations. Additionally, these alloys were designed for use in the wrought condition and require a different set of post-processing heat treatments when produced using DED due to their dendritic, segregated microstructure in the as-built condition. Homogenization …


Minimizing Leakage In Thin Walled Structures Printed Through Selective Laser Melting, Andrew Spencer Yap Jun 2021

Minimizing Leakage In Thin Walled Structures Printed Through Selective Laser Melting, Andrew Spencer Yap

Master's Theses

In this project, the scan strategy of selective laser melting (SLM) for thin walled structures was investigated by changing laser parameters and tool path. Producing thin walled structures is difficult due to defects such as warpage and porosity. A layer on the SLM 125 consists of hatch volume, fill contours, and borders, however, for thin walls, hatch volume can become unavailable, resulting in a solely border/fill contour laser tool path.

Three central composite designs (CCD) were created to optimize the laser parameters of borders to minimize leakage rate and porosity. The two factors changed were border laser power and scanning …


Fabricating Tinicu Ternary Shape Memory Alloy By Directed Energy Deposition Via Elemental Metal Powders, Yitao Chen, Xinchang Zhang, Mohammad Masud Parvez, Joseph William Newkirk, Frank W. Liou Jun 2021

Fabricating Tinicu Ternary Shape Memory Alloy By Directed Energy Deposition Via Elemental Metal Powders, Yitao Chen, Xinchang Zhang, Mohammad Masud Parvez, Joseph William Newkirk, Frank W. Liou

Materials Science and Engineering Faculty Research & Creative Works

In this paper, a TiNiCu shape memory alloy single-wall structure was fabricated by the directed energy deposition technique with a mixture of elemental Ti, Ni, and Cu powders following the atomic percentage of Ti50Ni45Cu5 to fully utilize the material flexibility of the additive manufacturing process to develop ternary shape memory alloys. The chemical composition, phase, and material properties at multiple locations along the build direction were studied, using scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, Vickers hardness test-ing, tensile testing, and differential scanning calorimetry. The location-dependent compositions of martensitic TiNi and austenitic TiNi phases, mechanical properties, and functional properties …


Absorption Of Nitrogen During Pulsed Wave L-Pbf Of 17-4 Ph Steel, Ben Brown, Joseph William Newkirk, Frank W. Liou Feb 2021

Absorption Of Nitrogen During Pulsed Wave L-Pbf Of 17-4 Ph Steel, Ben Brown, Joseph William Newkirk, Frank W. Liou

Materials Science and Engineering Faculty Research & Creative Works

In the fabrication of 17-4 PH by laser powder bed fusion (L-PBF) the well-documented occurrence of large amounts of retained austenite can be attributed to an elevated concentration of nitrogen present in the material. While the effects of continuous wave (CW) laser processing on in-situ nitrogen absorption characteristics have been evaluated, power modulated pulsed wave (PW) laser processing effects have not. In this study the effects of PW L-PBF processing of 17-4 PH on nitrogen absorption, phase composition, and mechanical performance are explored using commercially available PW L-PBF equipment and compared to samples produced by CW L-PBF. PW L-PBF samples …


Grain Size Effects In Selective Laser Melted Fe-Co-2v, Wesley Everhart, Joseph William Newkirk Sep 2019

Grain Size Effects In Selective Laser Melted Fe-Co-2v, Wesley Everhart, Joseph William Newkirk

Materials Science and Engineering Faculty Research & Creative Works

The material science of additive manufacturing (AM) has become a significant topic due to the unique way in which the material and geometry are created simultaneously. Major areas of research within inorganic materials include traditional structural materials, shape memory alloys, amorphous materials, and some new work in intermetallics. The unique thermal profiles created during selective laser melting (SLM) may provide new opportunities for processing intermetallics to improve mechanical and magnetic performance. A parameter set for the production of Fe-Co-2V material with additive manufacturing is developed and efforts are made to compare the traditional wrought alloy to the AM version of …


Process Parameter Development Of Additively Manufactured Af9628 Weapons Steel, Erin M. Hager Mar 2019

Process Parameter Development Of Additively Manufactured Af9628 Weapons Steel, Erin M. Hager

Theses and Dissertations

The manufacture of components in Additive Manufacturing processes is limited by the range of materials available. Qualification of materials for Additive Manufacturing is time intensive, and is often specific to a single type of machine. In this study, an approach to selecting power, speed, and hatch spacing values for a newly powderized material, AF9628 weapons steel, is described that results in highly dense (>99.9%) parts on an MLab 200R Cusing. Initial power and speed values used in a weld track study were selected based on a survey of parameters used on similar materials, with a focus on the energy …


Material Properties Of Laser Powder Bed Fusion Processed 316l Stainless Steel, Steven Keckler Jul 2018

Material Properties Of Laser Powder Bed Fusion Processed 316l Stainless Steel, Steven Keckler

Graduate Theses & Non-Theses

Laser powder bed fusion additive manufactured 316L stainless steel specimens were evaluated to establish a baseline for future research in determining an optimized energy density and build orientation. Test specimens were printed at various energy densities. At each energy density, tensile and fatigue specimens were printed at 0o (longitudinal), 45o, and 90o (transverse) orientation to the build plate. Tensile and high cycle fatigue tests were performed then representative fracture surfaces were analyzed. The apparent melt track and dendrite size were evaluated using grain analysis software. Static loading of the tensile specimens showed a marginal difference in UTS for specimens with …


The Effects Of Varying Composition And Build Direction On Direct Metal Deposition Fabricated Inconel 718, Abigail P. Nilan, Jessica M. Fordham Jun 2018

The Effects Of Varying Composition And Build Direction On Direct Metal Deposition Fabricated Inconel 718, Abigail P. Nilan, Jessica M. Fordham

Materials Engineering

Inconel 718 (IN718) is a popular wrought superalloy, and is currently being investigated for additive manufacturing (AM) applications in the aerospace industry. However, overaging and the presence of microcracks have caused a significant reduction in properties. The purpose of this study is to meet or exceed the mechanical properties of wrought IN718 by varying the composition and build direction of the AM alloy. Alternative compositions were selected with Oerlilon Metco’s Rapid Alloy Development (RAD) software, and differ in niobium content, which increases the fraction of the primary strengthening phase (γʺ). Direct metal deposition (DMD) was used to fabricate the samples, …


An Evaluation Of Ultrasonic Shot Peening And Abrasive Flow Machining As Surface Finishing Processes For Selective Laser Melted 316l, Rhys Gilmore Jun 2018

An Evaluation Of Ultrasonic Shot Peening And Abrasive Flow Machining As Surface Finishing Processes For Selective Laser Melted 316l, Rhys Gilmore

Master's Theses

Additive Manufacturing, and specifically powder bed fusion processes, have advanced rapidly in recent years. Selective Laser Melting in particular has been adopted in a variety of industries from biomedical to aerospace because of its capability to produce complex components with numerous alloys, including stainless steels, nickel superalloys, and titanium alloys. Post-processing is required to treat or solve metallurgical issues such as porosity, residual stresses, and surface roughness. Because of the geometric complexity of SLM produced parts, the reduction of surface roughness with conventional processing has proven especially challenging. In this Thesis, two processes, abrasive flow machining and ultrasonic shot peening, …


Characterization Of Process Induced Defects In Laser Powder Bed Fusion Processed Alsi10mg Alloy, Edward Stugelmayer Apr 2018

Characterization Of Process Induced Defects In Laser Powder Bed Fusion Processed Alsi10mg Alloy, Edward Stugelmayer

Graduate Theses & Non-Theses

Additive manufacturing using laser powder bed fusion (AM-LPBF) methods have recently experienced rapid growth and development, having the potential to replace manufacturing by plastic deformation, precision machining, or casting. AM offers advantages such as the freedom to design highly complex geometries, time and cost savings through material usage efficiency and shortened production cycles, and the potential for improved mechanical properties. Process induced defects, however, result in degradation and scattering of mechanical properties and hinder the widespread adoption of AM-LPBF in industry. This investigation focuses on the effects of varying energy density and build orientation on the evolution of process induced …


Evaluation Of Metallurgical And Mechanical Properties Of Alsi10mg Produced By Selective Laser Melting, Luke J. Suttey Apr 2018

Evaluation Of Metallurgical And Mechanical Properties Of Alsi10mg Produced By Selective Laser Melting, Luke J. Suttey

Graduate Theses & Non-Theses

Selective laser melting (SLM) additive manufacturing (AM) of metal powders has long been a focus in the study of AM due to the possibility of weight reduction, complex shape formation, and production cost savings. Although applicable to a variety of metals SLM AM of the AlSi10Mg alloy was studied in an attempt to characterize the effect of processing parameter and build angle variation on the final microstructural, fractographic, and mechanical properties of parts produced without any thermal post-processing techniques. Research was conducted on five build angles (0°, 30°, 45°, 60°, and 90°), and three Global Energy Densities (GED) (37.15, 45.39, …


Investigation Of 2195 And 2219 Post Weld Heat Treatments For Additive Friction Stir Lap Welds, Matthew Champagne Dec 2017

Investigation Of 2195 And 2219 Post Weld Heat Treatments For Additive Friction Stir Lap Welds, Matthew Champagne

University of New Orleans Theses and Dissertations

To evaluate potential uses for friction stir welding in additive manufacturing, two separate parts were fabricated, one of 2195-T84 and the other 2219-T87, utilizing fixed pin techniques and additive lap welds. The parts were cut into samples, artificially aged and subjected to Rockwell hardness (HRB), Vickers hardness, micrographic photography, and metallographic imaging on both pre- and post- heat treatment. Additionally, tensile testing was performed on the heat-treated samples. A comparisons of test results showed a minimal increase in the yield strength of the 2195-T84 samples compared to as-welded tensile results obtained from a previous project. The ultimate tensile strength was …


Effect Of Composition And Build Direction On Additively Manufactured Hastelloy X Alloys, Justin A. Spitzer, Jeffrey T. Schloetter, Sarah Zerga Jun 2017

Effect Of Composition And Build Direction On Additively Manufactured Hastelloy X Alloys, Justin A. Spitzer, Jeffrey T. Schloetter, Sarah Zerga

Materials Engineering

Microcracking has caused premature failure and reduction in properties in additively manufactured (AM) Hastelloy X. The purpose of this research is to meet or exceed the mechanical properties of wrought Hastelloy X by modifying the composition and build direction of Hastelloy X manufactured using Direct Metal Deposition (DMD). Tensile testing, scanning electron microscopy (SEM), and metallography were performed on the samples. ANOVA was used to analyze the dependence that the properties had on build direction and composition. The nominal composition wrought samples had a yield strength of 310.1 MPa and a 60.79% Elongation. Alloy P60-X18 in a horizontal build had …