Open Access. Powered by Scholars. Published by Universities.®

Metallurgy Commons

Open Access. Powered by Scholars. Published by Universities.®

Manufacturing

PDF

2017

Institution
Keyword
Publication
Publication Type

Articles 1 - 14 of 14

Full-Text Articles in Metallurgy

Investigation Of 2195 And 2219 Post Weld Heat Treatments For Additive Friction Stir Lap Welds, Matthew Champagne Dec 2017

Investigation Of 2195 And 2219 Post Weld Heat Treatments For Additive Friction Stir Lap Welds, Matthew Champagne

University of New Orleans Theses and Dissertations

To evaluate potential uses for friction stir welding in additive manufacturing, two separate parts were fabricated, one of 2195-T84 and the other 2219-T87, utilizing fixed pin techniques and additive lap welds. The parts were cut into samples, artificially aged and subjected to Rockwell hardness (HRB), Vickers hardness, micrographic photography, and metallographic imaging on both pre- and post- heat treatment. Additionally, tensile testing was performed on the heat-treated samples. A comparisons of test results showed a minimal increase in the yield strength of the 2195-T84 samples compared to as-welded tensile results obtained from a previous project. The ultimate tensile strength was …


Friction Stir Welding Manufacturing Advancement By On-Line High Temperature Phased Array Ultrasonic Testing And Correlation Of Process Parameters To Joint Quality, Daniel James Huggett Nov 2017

Friction Stir Welding Manufacturing Advancement By On-Line High Temperature Phased Array Ultrasonic Testing And Correlation Of Process Parameters To Joint Quality, Daniel James Huggett

LSU Doctoral Dissertations

Welding, a manufacturing process for joining, is widely employed in aerospace, aeronautical, maritime, nuclear, and automotive industries. Optimizing these techniques are paramount to continue the development of technologically advanced structures and vehicles. In this work, the manufacturing technique of friction stir welding (FSW) with aluminum alloy (AA) 2219-T87 is investigated to improve understanding of the process and advance manufacturing efficiency. AAs are widely employed in aerospace applications due to their notable strength and ductility. The extension of good strength and ductility to cryogenic temperatures make AAs suitable for rocket oxidizer and fuel tankage. AA-2219, a descendent of the original duralumin …


Numerical Simulation Of Multi-Phase Core-Shell Molten Metal Drop Oscillations, Kaushal Sumaria Oct 2017

Numerical Simulation Of Multi-Phase Core-Shell Molten Metal Drop Oscillations, Kaushal Sumaria

Masters Theses

The surface tension of liquid metals is an important and scientifically interesting parameter which affects many metallurgical processes such as casting, welding and melt spinning. Conventional methods for measuring surface tension are difficult to use for molten metals above temperatures of 1000 K. Containerless methods are can be used to measure the surface tension of molten metals above 1000 K. Oscillating drop method is one such method where a levitated droplet is allowed to undergo damped oscillations. Using the Rayleigh’s theory for the oscillation of force-free inviscid spherical droplets, surface tension and viscosity of the sample can be calculated from …


Note On The Rate And Energy Efficiency Limits For Additive Manufacturing, Timothy Gutowski, Sheng Jiang, Daniel Cooper, Gero Corman, Michael Hausmann, Jan-Anders Manson, Timo Schudeleit, Konrad Wegener, Matias Sabelle, Jorge Ramos-Grez, Dusan P. Sekulic Oct 2017

Note On The Rate And Energy Efficiency Limits For Additive Manufacturing, Timothy Gutowski, Sheng Jiang, Daniel Cooper, Gero Corman, Michael Hausmann, Jan-Anders Manson, Timo Schudeleit, Konrad Wegener, Matias Sabelle, Jorge Ramos-Grez, Dusan P. Sekulic

Mechanical Engineering Faculty Publications

We review the process rates and energy intensities of various additive processing technologies and focus on recent progress in improving these metrics for laser powder bed fusion processing of metals, and filament and pellet extrusion processing of polymers and composites. Over the last decade, observed progress in raw build rates has been quite substantial, with laser metal processes improving by about 1 order of magnitude, and polymer extrusion processes by more than 2 orders of magnitude. We develop simple heat transfer models that explain these improvements, point to other possible strategies for improvement, and highlight rate limits. We observe a …


Analysis Of Variable Insensitive Friction Stir Welding Parameters, Robert L. Marrero Jr Aug 2017

Analysis Of Variable Insensitive Friction Stir Welding Parameters, Robert L. Marrero Jr

University of New Orleans Theses and Dissertations

Friction Stir Welding (FSW) was used to perform a Design of Experiment (DOE) to determine the welding parameters effects on yielding consistent mechanical properties across the length of the weld. The travel speed was varied across set forge force and RPM conditions, to find a dataset that will yield consistent mechanical properties independent of the travel speed. Six different welds were completed on two different aluminum panels, the advancing side being Aluminum alloy 2195-T8 at a thickness of .350”, with the retreating side being Aluminum alloy 2219-T851 with a gauge thickness of .360”. A Left-hand Right-hand self-reacting pin tool was …


Design And Fabrication Of Functionally Graded Material From Ti To Γ-Tial By Laser Metal Deposition, Xueyang Chen, Lei Yan, Joseph William Newkirk, Frank W. Liou Aug 2017

Design And Fabrication Of Functionally Graded Material From Ti To Γ-Tial By Laser Metal Deposition, Xueyang Chen, Lei Yan, Joseph William Newkirk, Frank W. Liou

Materials Science and Engineering Faculty Research & Creative Works

Functionally graded material (FGM) is one kind of advanced material characterized by a gradual change in properties as the position varies. The spatial variation of compositional and microstructure over volume is aimed to control corresponding functional properties. In this research, when 100% γ-TiAl was directly deposited on pure Ti substrate, cracks were formed within the γ-TiAl layer. Then a six-layer crack-free functionally graded material of Ti/TiAl was designed and fabricated by laser metal deposition (LMD) method, with composition changing from pure Ti on one side to 100% γ-TiAl on the other side. The fabricated FGM was characterized for material properties …


Influence Of Gage Length On Miniature Tensile Characterization Of Powder Bed Fabricated 304l Stainless Steel, Sreekar Karnati, Jack L. Hoerchler, Frank W. Liou, Joseph William Newkirk Aug 2017

Influence Of Gage Length On Miniature Tensile Characterization Of Powder Bed Fabricated 304l Stainless Steel, Sreekar Karnati, Jack L. Hoerchler, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Miniature tensile specimens with varying aspect ratios were fabricated from 304L stainless steel (SS) made using powder bed additive manufacturing (AM) process. The tensile characteristics measured from these specimens were analyzed to assess the impact of gage length. The study found no impact upon varying gage length on yield and ultimate strength measurements. However, a significant impact was observed on strain measurements. This data was also used to perform Weibull statistics to estimate the stochastic performance of the material. Fractography was performed to visually identify the types of flaws. A comparative study with specimens fabricated from cold rolled annealed 304 …


Characterization Of Heat-Affected Powder Generated During Selective Laser Melting Of 304l Stainless Steel Powder, Austin T. Sutton, Caitlin S. Kriewall, Ming-Chuan Leu, Joseph William Newkirk Aug 2017

Characterization Of Heat-Affected Powder Generated During Selective Laser Melting Of 304l Stainless Steel Powder, Austin T. Sutton, Caitlin S. Kriewall, Ming-Chuan Leu, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The selective laser melting (SLM) process is an Additive Manufacturing (AM) technique that uses a laser to fuse successive layers of powder into near fully dense components. Due to the large energy input from the laser during processing, vaporization and instabilities in the melt pool occur causing the formation of condensate and laser spatter, collectively known as heat-affected powder. Since heat-affected powder settles into the powder bed, the properties of the unconsolidated powder may be altered compromising its reusability. In this study, characterization of 304L heat-affected powder was performed through particle size distribution measurements, x-ray diffraction, metallography, energy-dispersive spectroscopy mapping, …


Studying Chromium And Nickel Equivalency To Identify Viable Additive Manufacturing Stainless Steel Chemistries, Zachary T. Hilton, Joseph William Newkirk, Ronald J. O'Malley Aug 2017

Studying Chromium And Nickel Equivalency To Identify Viable Additive Manufacturing Stainless Steel Chemistries, Zachary T. Hilton, Joseph William Newkirk, Ronald J. O'Malley

Materials Science and Engineering Faculty Research & Creative Works

Chromium and nickel equivalency modeling has long been used in welding to determine the weldability of steel chemistries. A study was conducted to determine the applicability of Cr-Ni modeling to the additive manufacturing process. Many AM methods involve rapid solidification of small melt pools, similar to welding. Chemistries with varying Cr/Ni ratios were selected for use in a selective laser melting process and modeled using known models. Initial results indicate that the standard "safe welding zone" may not directly apply to additive manufacturing. The capability to build with chemistries outside the weldability “safe zone” could result in improved and varied …


Effect Of Composition And Build Direction On Additively Manufactured Hastelloy X Alloys, Justin A. Spitzer, Jeffrey T. Schloetter, Sarah Zerga Jun 2017

Effect Of Composition And Build Direction On Additively Manufactured Hastelloy X Alloys, Justin A. Spitzer, Jeffrey T. Schloetter, Sarah Zerga

Materials Engineering

Microcracking has caused premature failure and reduction in properties in additively manufactured (AM) Hastelloy X. The purpose of this research is to meet or exceed the mechanical properties of wrought Hastelloy X by modifying the composition and build direction of Hastelloy X manufactured using Direct Metal Deposition (DMD). Tensile testing, scanning electron microscopy (SEM), and metallography were performed on the samples. ANOVA was used to analyze the dependence that the properties had on build direction and composition. The nominal composition wrought samples had a yield strength of 310.1 MPa and a 60.79% Elongation. Alloy P60-X18 in a horizontal build had …


Design And Validation Of Novel Potential High Entropy Alloys, Boliang Zhang Jan 2017

Design And Validation Of Novel Potential High Entropy Alloys, Boliang Zhang

LSU Doctoral Dissertations

The design approach and validation of single phase senary refractory high entropy alloys (HEAs) MoNbTaTiVW and HfNbTaTiVZr were presented in first part of this dissertation. The design approach was to combine phase diagram inspection of available binary and ternary systems and Calculation of Phase Diagrams (CALPHAD) prediction. Experiments using X-ray diffraction and scanning electron microscopy techniques verified single phase microstructure in body centered cubic lattice for both alloys. The observed elemental segregation agrees well with the solidification prediction using Scheil model. The lattice constant, density and microhardness were measured to be 0.3216 nm, 4.954 GPa and 11.70 g/cm3 for …


Tensile Specimen Punch, John Allen Jan 2017

Tensile Specimen Punch, John Allen

All Undergraduate Projects

This project comes from a need to have tensile specimens made for the MET 351, Metallurgy/Materials and Processes, and 426, Applied Strengths of Materials, labs. This punch is designed to be used with an arbor press to create the desired tensile specimen shape out of plastic blanks. The initial concept was suggested by Dr. Craig Johnson. The designs went through many changes, for example getting rid of the sides originally proposed to hold the specimen in place, and modifications to other parts to make them more efficient. Additional parts were also added to the design with the help and advice …


Thermal Analysis Of 3d Printed 420 Stainless Steel, Adithya Pothuri Jan 2017

Thermal Analysis Of 3d Printed 420 Stainless Steel, Adithya Pothuri

All Graduate Theses, Dissertations, and Other Capstone Projects

Additive manufacturing opens new possibilities in the manufacturing industry. 3D printing is a form of additive manufacturing. 3D printers will have a significant influence over the industrial market, with extremely positive effects in no time. The main aim of this research is to determine the effect of process parameters of Binder Jet manufactured 420 Stainless Steel (420SS) parts on thermal properties such as thermal conductivity. Different parameters, such as layer thickness, sintering time and sintering temperature were varied. A full factorial design of experiment matrix was made by varying these parameters using two levels. Testing showed that different parameters affected …


Shape Memory Behavior Of Dense And Porous Niti Alloys Fabricated By Selective Laser Melting, Soheil Saedi Jan 2017

Shape Memory Behavior Of Dense And Porous Niti Alloys Fabricated By Selective Laser Melting, Soheil Saedi

Theses and Dissertations--Mechanical Engineering

Selective Laser Melting (SLM) of Additive Manufacturing is an attractive fabrication method that employs CAD data to selectively melt the metal powder layer by layer via a laser beam and produce a 3D part. This method not only opens a new window in overcoming traditional NiTi fabrication problems but also for producing porous or complex shaped structures. The combination of SLM fabrication advantages with the unique properties of NiTi alloys, such as shape memory effect, superelasticity, high ductility, work output, corrosion, biocompatibility, etc. makes SLM NiTi alloys extremely promising for numerous applications.

The SLM process parameters such as laser power, …