Open Access. Powered by Scholars. Published by Universities.®

Metallurgy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Metallurgy

Investigation Of Microstructure And Mechanical Behavior Of Novel Powder-Extruded Al-Ce-Mg Alloys, Mairym Vazquez Aug 2023

Investigation Of Microstructure And Mechanical Behavior Of Novel Powder-Extruded Al-Ce-Mg Alloys, Mairym Vazquez

Doctoral Dissertations

Pursuing advanced structural materials with enhanced performance, reduced weight, and lower costs is a constant endeavor in the aerospace and automotive industries. Conventional structural alloys, such as cast irons, carbon steels, and titanium alloys, have strength, weight, and cost limitations. Aluminum-based alloys, known for their lightweight and high strength, have gained popularity in these industries. This dissertation focuses on investigating microstructure and mechanical behavior of novel powder-extruded Al-Ce-Mg alloys as potential candidates for high-performance structural materials.

This research explores using powder extrusion, a well-established forging methodology in the steel industry, to produce Al-Ce-Mg alloys with improved properties and aims to …


Classification Of Electrical Current Used In Electroplastic Forming, Tyler Grimm May 2023

Classification Of Electrical Current Used In Electroplastic Forming, Tyler Grimm

All Dissertations

Electrically assisted manufacturing (EAM) is the direct application of an electric current to a workpiece during manufacturing. This advanced manufacturing process has been shown to produce anomalous effects which extend beyond the current state of modeling of thermal influences. These purported non-thermal effects have collectively been termed electroplastic effects (EPEs).

While there is a distinct difference in results between steady-state (ideal DC) testing and pulsed current testing, the very definition of these two EAM methods has not been well established. A "long" pulse may be considered DC current; a "short" pulse may produce electroplastic effects; and even "steady-state" current shapes …


Mesoscale Modeling And Machine Learning Studies Of Grain Boundary Segregation In Metallic Alloys, Malek Alkayyali May 2023

Mesoscale Modeling And Machine Learning Studies Of Grain Boundary Segregation In Metallic Alloys, Malek Alkayyali

All Dissertations

Nearly all structural and functional materials are polycrystalline alloys; they are composed of differently oriented crystalline grains that are joined at internal interfaces termed grain boundaries (GBs). It is well accepted that GB dynamics play a critical role in many phenomena during materials processing or under operating environments. Of particular interest are GB migration and grain growth processes, as they influence many crystal-size dependent properties, such as mechanical strength and electrical conductivity.

In metallic alloys, GBs offer a plethora of preferential atomic sites for alloying elements to occupy. Indeed, recent experimental studies employing in-situ microscopy revealed strong GB solute segregation …


Physics-Based Crystal Plasticity Model For Predicting Microstructure Evolution And Dislocation Densities, Juyoung Jeong Mar 2023

Physics-Based Crystal Plasticity Model For Predicting Microstructure Evolution And Dislocation Densities, Juyoung Jeong

LSU Doctoral Dissertations

This work presents three different studies investigating plastic deformation mechanisms in metals and alloys using crystal plasticity finite element (CPFE) modeling. The first study presents a new nonlocal crystal plasticity model for face-centered cubic single crystals under heterogeneous inelastic deformation. The model incorporates generalized constitutive relations that incorporate the thermally activated and drag mechanisms to cover different kinetics of viscoplastic flow in metals and describes the plastic flow and yielding of single-crystals using dislocation densities. The model is compared to micropillar compression experiments for copper single crystals and clarifies the complex microstructural evolution of dislocation densities in metals. The second …


Application Of Multi-Scale Computational Techniques To Complex Materials Systems, Mujan N. Seif Jan 2023

Application Of Multi-Scale Computational Techniques To Complex Materials Systems, Mujan N. Seif

Theses and Dissertations--Chemical and Materials Engineering

The applications of computational materials science are ever-increasing, connecting fields far beyond traditional subfields in materials science. This dissertation demonstrates the broad scope of multi-scale computational techniques by investigating multiple unrelated complex material systems, namely scandate thermionic cathodes and the metallic foam component of micrometeoroid and orbital debris (MMOD) shielding. Sc-containing "scandate" cathodes have been widely reported to exhibit superior properties compared to previous thermionic cathodes; however, knowledge of their precise operating mechanism remains elusive. Here, quantum mechanical calculations were utilized to map the phase space of stable, highly-faceted and chemically-complex W nanoparticles, accounting for both finite temperature and chemical …