Open Access. Powered by Scholars. Published by Universities.®

Metallurgy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Metallurgy

Erosion Resistance Of Tungsten-Carbide Coatings For Steel Pipes In Fluid Catalytic Cracking Units, Davis Vannasing, Jennifer Hulfachor Jun 2019

Erosion Resistance Of Tungsten-Carbide Coatings For Steel Pipes In Fluid Catalytic Cracking Units, Davis Vannasing, Jennifer Hulfachor

Materials Engineering

In petroleum processing, the flow of catalyst readily leads to erosion of piping in a fluid catalytic cracking unit. Advances in coating materials and processes necessitate a re-evaluation of current protection methods. Commercially available tungsten-carbide (WC) claddings and nanostructured WC-W CVD coatings were investigated as potential alternative erosion-resistant coatings. Erosion tests by solid particle impingement were conducted on 2 variations of claddings and 1 variation of WC-W coatings following ASTM standard G76. A36 steel coupons were used as reference samples. For statistical validation, 2-3 replications of the tests were performed for the claddings and WC-W coating. Testing was conducted using …


Investigation Of Copper Infiltration Alloys For Use In Metal Matrix Composite Drill Bits, Samuel J. Stueland, Timothy P. Markiewicz Jun 2019

Investigation Of Copper Infiltration Alloys For Use In Metal Matrix Composite Drill Bits, Samuel J. Stueland, Timothy P. Markiewicz

Materials Engineering

A newly developed copper-based alloy, P98-X1 was tested for compressive strength to predict qualitative performance compared to MF53, F-Bronze, CuNiSn, and CuMnNi for use as the infiltration alloy in metal matrix composite (MMC) drill bits. Ingots of each alloy were cast using an arc furnace and cut into compression testing samples using wire electrical discharge machining (EDM). The alloys were selected for testing based on solid solution strengthening coefficient and melting point. Five of each alloy were compression tested to determine yield strength of the infiltration alloy. Yield strength was determined using a 0.002mm displacement offset from the linear elastic …


Characterization Of Aluminum-Boron Carbide Particulate Metal Matrix Composites, Eric Blank Jun 2010

Characterization Of Aluminum-Boron Carbide Particulate Metal Matrix Composites, Eric Blank

Materials Engineering

The analysis of die-cast 380 aluminum-boron carbide particulate metal matrix composites (MMC) was performed in order to see if the samples had the required tensile strength of 300 MPa. 10wt% B4C die-cast samples were produced and tested. Half were heat treated to the T6 condition and the others were left as cast. Using ASTM standard B 557M it was found that the average tensile strength for the as-cast samples was 130 MPa and the heat treated samples had a tensile strength of 93 MPa. These values were both lower than expected. The heat treated samples were not expected to have …