Open Access. Powered by Scholars. Published by Universities.®

Other Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Materials Science and Engineering

2016

Articles 1 - 12 of 12

Full-Text Articles in Other Engineering Science and Materials

Development Of Lignin Carbon Fiber And Reinforced Composites, Nathan Kieran Meek Dec 2016

Development Of Lignin Carbon Fiber And Reinforced Composites, Nathan Kieran Meek

Masters Theses

The aim of this work is to develop lignin carbon fiber for composite applications. This included mechanical testing of single lignin carbon fiber (LCF), interfacial shear strength determination for LCF-resin systems using single fiber fragmentation, x-ray diffraction for the evaluation of microstructural parameters, and finally composite manufacturing and testing. Through these focused areas of analysis, the carbon fiber is thoroughly characterized and composite performance is evaluated. This effort was a collaboration with the Center for Renewable Carbon (CRC) and the Civil and Environmental Engineering Department. LCF produced by the CRC resulted in fibers having tensile strength of 250-800 MPa and …


Structure-Property Relationships Of Polyisobutylene-Block-Polyamide Thermoplastic Elastomers, Morgan Dunn Heskett Dec 2016

Structure-Property Relationships Of Polyisobutylene-Block-Polyamide Thermoplastic Elastomers, Morgan Dunn Heskett

Master's Theses

Thermoplastic elastomers (TPEs) are a class of polymer fit for a wide variety of applications due to their customizability. In the synthesis of these types of materials, an elastically-performing polymer, deemed the “soft block,” is combined with a stiffer “hard block” polymer, each of which can be selected based on their own specific properties in order to achieve desired material behavior in the final copolymer. Recently, the use of polyisobutylene as a soft block in combination with a polyamide hard block has been investigated for use in TPE synthesis. While the material showed some promising behavior, many properties were still …


Numerical Simulation And Experiments Analysis On Stiffness Control Mechanism Of Hyperboloid Shallow Shells, Zhao Lihong, Yu Haiping, Xing Zhongwen, Lei Chengxi, Wu Bin Oct 2016

Numerical Simulation And Experiments Analysis On Stiffness Control Mechanism Of Hyperboloid Shallow Shells, Zhao Lihong, Yu Haiping, Xing Zhongwen, Lei Chengxi, Wu Bin

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Mpfem Simulation On 2d Compaction Of Core–Shell Particulate Composites, Yu Liu, Fen Huang, Peng Han, Xizhong An, Haitao Fu Oct 2016

Mpfem Simulation On 2d Compaction Of Core–Shell Particulate Composites, Yu Liu, Fen Huang, Peng Han, Xizhong An, Haitao Fu

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Direct Band Gap Gallium Antimonide Phosphide (Gasbxp1-X) For Solar Fuels., Harry Benjamin Russell May 2016

Direct Band Gap Gallium Antimonide Phosphide (Gasbxp1-X) For Solar Fuels., Harry Benjamin Russell

Electronic Theses and Dissertations

Photoelectrochemical water splitting has been identified as a promising route for achieving sustainable energy future. However, semiconductor materials with the appropriate optical, electrical and electrochemical properties have yet to be discovered. In search of an appropriate semiconductor to fill this gap, GaSbP, a semiconductor never tested for PEC performance is proposed here and investigated. Density functional theory (DFT+U) techniques were utilized to predict band gap and band edge energetics for GaSbP alloys with low amount of antimony. The overall objective of this dissertation is to understand the suitability of GaSbxP1-x alloys for photoelectrochemical water splitting application. Specifically, …


First-Principles Studies Of Structure-Property Relationships: Enabling Design Of Functional Materials, Qunfei Zhou Jan 2016

First-Principles Studies Of Structure-Property Relationships: Enabling Design Of Functional Materials, Qunfei Zhou

Theses and Dissertations--Chemical and Materials Engineering

First-principles calculations based on quantum mechanics have been proved to be powerful for accurately regenerating experimental results, uncovering underlying myths of experimental phenomena, and accelerating the design of innovative materials. This work has been motivated by the demand to design next-generation thermionic emitting cathodes and techniques to allow for synthesis of photo-responsive polymers on complex surfaces with controlled thickness and patterns. For Os-coated tungsten thermionic dispenser cathodes, we used first-principles methods to explore the bulk and surface properties of W-Os alloys in order to explain the previously observed experimental phenomena that thermionic emission varies significantly with W-Os alloy composition. Meanwhile, …


Multi-Use Fireline Handtool, Bruce W. Bernard Jr Jan 2016

Multi-Use Fireline Handtool, Bruce W. Bernard Jr

All Undergraduate Projects

A wildland firefighter is a valuable resource to protecting public lands and managing fuels. The many hand tools used by firefighters aid in their ability to complete any required tasks effectively. Several of the tools available are specially purposed for individually grubbing, scraping, or liming. A small squad of firefighters could become a more effective resource if the tools they carried could perform several of these purposes as one single tool. To improve the effectiveness of an individual on the fireline a multi-use hand tool was designed to include an axe for liming and a heavy duty scraper for grubbing …


Preliminary Investigation Into The Rate Of Carbonation Of Concrete Blocks Under Normal Production Yard Conditions, Aimee Byrne, Eanna Nolan Jan 2016

Preliminary Investigation Into The Rate Of Carbonation Of Concrete Blocks Under Normal Production Yard Conditions, Aimee Byrne, Eanna Nolan

Conference papers

The release of CO2 from calcination during the manufacture of cement can be partially or fully offset by the CO2 it naturally absorbs during its lifetime. This paper reports results from a preliminary investigation into the rate of carbonation in concrete blocks stacked in a production yard over a period of 6 months. The blocks were stacked in a normal manner under natural exposure conditions. Carbonation progress was determined by splitting the blocks and spraying the freshly exposed surface with a phenolphthalein solution at intervals over the test period. It was found that the rate of the carbonation front progression …


An Overview Of The Development Of Cement-Based Batteries For The Cathodic Protection Of Embedded Steel In Concrete, Aimee Byrne, Niall Holmes, Brian Norton Jan 2016

An Overview Of The Development Of Cement-Based Batteries For The Cathodic Protection Of Embedded Steel In Concrete, Aimee Byrne, Niall Holmes, Brian Norton

Conference papers

This paper presents an overview of the cement-based batteries developed in DIT for use in the cathodic protection of embedded steel in reinforced concrete undergoing chloride-induced corrosion. Cathodic protection delivers an external current (approximately 20mA per m2 of embedded steel) which effectively polarises the internal current generated during corrosion. The batteries developed in DIT comprise of a cement-based electrolyte containing different additives including sand, aggregate, salts, carbon black and plasticiser with protruding anode and cathode metal plates. These batteries produced an initial electrical output of 1.5V and 23mA through a 10 resistor as measured using data acquisition units and a …


Low Temperature Solution-Processed Sb:Sno2 Nanocrystals For Efficient Planar Perovskite Solar Cells, Yang Bai, Yanjun Fang, Yehao Deng, Qi Wang, Jingjing Zhao, Xiaopeng Zheng, Yang Zhang, Jinsong Huang Jan 2016

Low Temperature Solution-Processed Sb:Sno2 Nanocrystals For Efficient Planar Perovskite Solar Cells, Yang Bai, Yanjun Fang, Yehao Deng, Qi Wang, Jingjing Zhao, Xiaopeng Zheng, Yang Zhang, Jinsong Huang

Department of Mechanical and Materials Engineering: Faculty Publications

Inorganic metal oxide electron-transport layers (ETLs) have the potential to yield perovskite solar cells with improved stability, but generally need high temperature to form conductive and defect-less forms, which is not compatible with the fabrication of flexible and tandem solar cells. Here, we demonstrate a facile strategy for developing efficient inorganic ETLs by doping SnO2 nanocrystals (NCs) with a small amount of Sb using a low-temperature solution-processed method. The electrical conductivity was remarkably enhanced by Sb-doping, which increased the carrier concentration in Sb:SnO2 NCs. Moreover, the upward shift of the Fermi level owing to doping results in improved …


Galvanic Corrosion On Monel K-500 And 1018 Carbon Steel Couple, John K. Nnyanzi Jan 2016

Galvanic Corrosion On Monel K-500 And 1018 Carbon Steel Couple, John K. Nnyanzi

Williams Honors College, Honors Research Projects

The purpose of this research project was to evaluate galvanic damage on 1018 Carbon Steel coupled to Monel K-500 at varying rotation speeds on a rotating cylinder electrode in an aerated solution of ASTM artificial seawater. The work in this project is and attempt to study corrosion behavior for a Monel fastener coupled to a Carbon Steel plate. Polarization curves of each material at different rotation speeds were created to predict the corrosion behavior for a galvanic couple of Carbon Steel and Monel. The Potentiodynamic sweeps predict an increase in the corrosion current density for the galvanic couple when then …


Case Studies Of Cavity And External Wall Insulation Retrofitted Under The Irish Home Energy Saving Scheme: Technical Analysis And Occupant Perspectives, Aimee Byrne, Gerard Byrne, Garrett O'Donnell, Anthony Robinson Jan 2016

Case Studies Of Cavity And External Wall Insulation Retrofitted Under The Irish Home Energy Saving Scheme: Technical Analysis And Occupant Perspectives, Aimee Byrne, Gerard Byrne, Garrett O'Donnell, Anthony Robinson

Articles

The residential sector represents 27% of primary energy consumption in Ireland. This paper examines the case study of the Irish government’s national grant scheme to encourage energy efficiency retrofit in private housing. That is the Home Energy Saving (HES) Scheme, later rebranded the Better Energy: Homes (BEH) Scheme. The methodology involved monitoring several homes immediately before and after retrofit alongside discussions with occupants. The examination focused on specific measures commonly introduced through the HES/BEH programme − cavity and external wall insulation. It has been found that a significant decrease in heat loss through the walls was measured in all cases. …