Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in VLSI and Circuits, Embedded and Hardware Systems

A Highly Integrated Gate Driver With 100% Duty Cycle Capability And High Output Current Drive For Wide-Bandgap Power Switches In Extreme Environments, Robert Lee Greenwell Dec 2012

A Highly Integrated Gate Driver With 100% Duty Cycle Capability And High Output Current Drive For Wide-Bandgap Power Switches In Extreme Environments, Robert Lee Greenwell

Doctoral Dissertations

High-temperature integrated circuits fill a need in applications where there are obvious benefits to reduced thermal management or where circuitry is placed away from temperature extremes. Examples of these applications include aerospace, automotive, power generation, and well-logging. This work focuses on the automotive applications, in which the growing demand for hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and fuel cell vehicles (FCVs) has increased the need for high-temperature electronics that can operate at the extreme ambient temperatures that exist under the hood, which can be in excess of 150°C. Silicon carbide (SiC) and other wide-bandgap power switches that …


A Charge-Recycling Scheme And Ultra Low Voltage Self-Startup Charge Pump For Highly Energy Efficient Mixed Signal Systems-On-A-Chip, Chandradevi Ulaganathan Dec 2012

A Charge-Recycling Scheme And Ultra Low Voltage Self-Startup Charge Pump For Highly Energy Efficient Mixed Signal Systems-On-A-Chip, Chandradevi Ulaganathan

Doctoral Dissertations

The advent of battery operated sensor-based electronic systems has provided a pressing need to design energy-efficient, ultra-low power integrated circuits as a means to improve the battery lifetime. This dissertation describes a scheme to lower the power requirement of a digital circuit through the use of charge-recycling and dynamic supply-voltage scaling techniques. The novel charge-recycling scheme proposed in this research demonstrates the feasibility of operating digital circuits using the charge scavenged from the leakage and dynamic load currents inherent to digital design. The proposed scheme efficiently gathers the “ground-bound” charge into storage capacitor banks. This reclaimed charge is then subsequently …


Low Power Data Acquisition For Microimplant Biometric Monitoring Of Tremors, Tania Khanna '01 Sep 2012

Low Power Data Acquisition For Microimplant Biometric Monitoring Of Tremors, Tania Khanna '01

Doctoral Dissertations

In recent years, trends in the medical industry have created a growing demand for implantable medical devices. In particular, the need to provide doctors a means to continuously monitor biometrics over long time scales with increased precision is paramount to efficient healthcare. To make medical implants more attractive, there is a need to reduce their size and power consumption. Small medical implants would allow for less invasive procedures, greater comfort for patients, and increased patient compliance. Reductions in power consumption translate to longer battery life. The two primary limitations to the size of small medical implants are the batteries that …


Characterization And Implementation Of An Injection Locked Frequency Divider Based On Relaxation Oscillator, Kai Zhu Aug 2012

Characterization And Implementation Of An Injection Locked Frequency Divider Based On Relaxation Oscillator, Kai Zhu

Doctoral Dissertations

There has been a dramatic increase in wireless awareness among the user community in the past few years. As the wireless communication devices require more integration in terms of both hardware and software, the low-power integrated circuit (IC) solution has gained higher dedication and will dominate in the future radio-frequency IC (RFIC) design. Complementary Metal-Oxide Semiconductor (CMOS) process is extremely attractive for such applications because of its low cost and the possibility to integrate baseband and high frequency circuits on the same chip. The transceiver is often the most power-hungry block in a wireless communication system. The frequency divider (prescaler) …


Low-Voltage Bulk-Driven Amplifier Design And Its Application In Implantable Biomedical Sensors, Liang Zuo Apr 2012

Low-Voltage Bulk-Driven Amplifier Design And Its Application In Implantable Biomedical Sensors, Liang Zuo

Doctoral Dissertations

The powering unit usually represents a significant component of the implantable biomedical sensor system since the integrated circuits (ICs) inside for monitoring different physiological functions consume a great amount of power. One method to reduce the volume of the powering unit is to minimize the power supply voltage of the entire system. On the other hand, with the development of the deep sub-micron CMOS technologies, the minimum channel length for a single transistor has been scaled down aggressively which facilitates the reduction of the chip area as well. Unfortunately, as an inevitable part of analytic systems, analog circuits such as …