Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in VLSI and Circuits, Embedded and Hardware Systems

Low-Power, Event-Driven System On A Chip For Charge Pulse Processing Applications, Joseph A. Schmitz Dec 2023

Low-Power, Event-Driven System On A Chip For Charge Pulse Processing Applications, Joseph A. Schmitz

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

This dissertation presents an electronic architecture and methodology capable of processing charge pulses generated by a range of sensors, including radiation detectors and tactile synthetic skin. These sensors output a charge signal proportional to the input stimulus, which is processed electronically in both the analog and digital domains. The presented work implements this functionality using an event-driven methodology, which greatly reduces power consumption compared to standard implementations. This enables new application areas that require a long operating time or compact physical dimensions, which would not otherwise be possible. The architecture is designed, fabricated, and tested in the aforementioned applications to …


Low Power Multi-Channel Interface For Charge Based Tactile Sensors, Samuel Hansen Dec 2022

Low Power Multi-Channel Interface For Charge Based Tactile Sensors, Samuel Hansen

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Analog front end electronics are designed in 65 nm CMOS technology to process charge pulses arriving from a tactile sensor array. This is accomplished through the use of charge sensitive amplifiers and discrete time filters with tunable clock signals located in each of the analog front ends. Sensors were emulated using Gaussian pulses during simulation. The digital side of the system uses SAR (successive approximation register) ADCs for sampling of the processed sensor signals.

Adviser: Sina Balkır


System Design And Control Optimization For Neurorehabilitation Exoskeleton, Rodrigo N. Ramon Apr 2022

System Design And Control Optimization For Neurorehabilitation Exoskeleton, Rodrigo N. Ramon

FIU Electronic Theses and Dissertations

Neurorehabilitation is a comprehensive approach aimed at helping patients regain motor control after a neural injury, including spinal cord injury, stroke, or other ischemic events. Early-stage neurorehabilitation is particularly delicate due to voluntary muscular weakness and lack of motor control, presenting in the form of spasticity. Unfortunately, this period of elevated weakness is when most neural control improvement can be made through a phenomenon called brain plasticity. Early rehabilitation traditionally requires a human therapist due to the adaptive and dynamic interpretation of undesired neuromuscular events. While efforts have been made to develop devices to aid in neurorehabilitation, the considerations that …


Bibliometric Review Of Predictive Maintenance Using Vibration Analysis, Aashna Midha Ms., Ishita Maheshwari Ms., Kaushik Ojha Mr., Kritika Gupta Ms., Shripad V. Deshpande Mr. May 2021

Bibliometric Review Of Predictive Maintenance Using Vibration Analysis, Aashna Midha Ms., Ishita Maheshwari Ms., Kaushik Ojha Mr., Kritika Gupta Ms., Shripad V. Deshpande Mr.

Library Philosophy and Practice (e-journal)

Every day the world is depending more and more on machines in almost every aspect of life. With the increasing use of machines, there also needs to be an evolution in the maintenance of these machines. Predictive maintenance is a process used to monitor the equipment and machinery during its operation to detect any damages and/or deteriorations and enable the required maintenance plan in advance, resulting in reduced operational costs and full utilization of tools and parts. The fundamental goal of this bibliometric review paper is a comprehension of the extent and sources of the literature available for predictive maintenance …


Digital And Mixed Domain Hardware Reduction Algorithms And Implementations For Massive Mimo, Najath A. Mohomed Nov 2020

Digital And Mixed Domain Hardware Reduction Algorithms And Implementations For Massive Mimo, Najath A. Mohomed

FIU Electronic Theses and Dissertations

Emerging 5G and 6G based wireless communications systems largely rely on multiple-input-multiple-output (MIMO) systems to reduce inherently extensive path losses, facilitate high data rates, and high spatial diversity. Massive MIMO systems used in mmWave and sub-THz applications consists of hundreds perhaps thousands of antenna elements at base stations. Digital beamforming techniques provide the highest flexibility and better degrees of freedom for phased antenna arrays as compared to its analog and hybrid alternatives but has the highest hardware complexity.

Conventional digital beamformers at the receiver require a dedicated analog to digital converter (ADC) for every antenna element, leading to ADCs for …


Algorithms And Circuits For Analog-Digital Hybrid Multibeam Arrays, Paboda Viduneth A. Beruwawela Pathiranage Nov 2019

Algorithms And Circuits For Analog-Digital Hybrid Multibeam Arrays, Paboda Viduneth A. Beruwawela Pathiranage

FIU Electronic Theses and Dissertations

Fifth generation (5G) and beyond wireless communication systems will rely heavily on larger antenna arrays combined with beamforming to mitigate the high free-space path-loss that prevails in millimeter-wave (mmW) and above frequencies. Sharp beams that can support wide bandwidths are desired both at the transmitter and the receiver to leverage the glut of bandwidth available at these frequency bands. Further, multiple simultaneous sharp beams are imperative for such systems to exploit mmW/sub-THz wireless channels using multiple reflected paths simultaneously. Therefore, multibeam antenna arrays that can support wider bandwidths are a key enabler for 5G and beyond systems.

In general, N- …


Continuous-Time Algorithms And Analog Integrated Circuits For Solving Partial Differential Equations, Nilan Udayanga Galabada Kankanamge Nov 2019

Continuous-Time Algorithms And Analog Integrated Circuits For Solving Partial Differential Equations, Nilan Udayanga Galabada Kankanamge

FIU Electronic Theses and Dissertations

Analog computing (AC) was the predominant form of computing up to the end of World War II. The invention of digital computers (DCs) followed by developments in transistors and thereafter integrated circuits (IC), has led to exponential growth in DCs over the last few decades, making ACs a largely forgotten concept. However, as described by the impending slow-down of Moore’s law, the performance of DCs is no longer improving exponentially, as DCs are approaching clock speed, power dissipation, and transistor density limits. This research explores the possibility of employing AC concepts, albeit using modern IC technologies at radio frequency (RF) …


Multivariate Analysis For The Quantification Of Transdermal Volatile Organic Compounds In Humans By Proton Exchange Membrane Fuel Cell System, Ahmed Hasnain Jalal Nov 2018

Multivariate Analysis For The Quantification Of Transdermal Volatile Organic Compounds In Humans By Proton Exchange Membrane Fuel Cell System, Ahmed Hasnain Jalal

FIU Electronic Theses and Dissertations

In this research, a proton exchange membrane fuel cell (PEMFC) sensor was investigated for specific detection of volatile organic compounds (VOCs) for point-of-care (POC) diagnosis of the physiological conditions of humans. A PEMFC is an electrochemical transducer that converts chemical energy into electrical energy. A Redox reaction takes place at its electrodes whereas the volatile biomolecules (e.g. ethanol) are oxidized at the anode and ambient oxygen is reduced at the cathode. The compounds which were the focus of this investigation were ethanol (C2H5OH) and isoflurane (C3H2ClF5O), but theoretically, the sensor …


Unmanned Aircraft Systems: Air-Ground Channel Characterization For Future Applications, David W. Matolak, Ruoyu Sun Jun 2015

Unmanned Aircraft Systems: Air-Ground Channel Characterization For Future Applications, David W. Matolak, Ruoyu Sun

Faculty Publications

Unmanned aircraft systems (UASs) are being used increasingly worldwide. These systems will operate in conditions that differ from conventional piloted aircraft, and this implies that the airground (AG) channel for UASs can differ significantly from the traditional, simple, AG channel models. After providing some background and motivation, we describe the AG channel features and our efforts in measuring and modeling the AG channel. Some example measurement and model results-for the path loss and the Ricean K-factor-are provided to illustrate some of the interesting AG channel characteristics that are still being investigated.


Low-Power Analog Processing, Daniel J. White Nov 2014

Low-Power Analog Processing, Daniel J. White

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

This dissertation presents the analog harmonic transform (AHT) and a first implementation in an integrated circuit. The transform is designed for a regular and simple hardware structure. It provides coefficients relating to an input signal's spectrum. These coefficients also have a simple relationship to the signal's Fouri\'er series coefficients.

The AHT is defined in its ideal form and evaluated for two example signal classification applications. Both military vehicle and bearing fault classification tasks are presented which validate the ability of a neural network to use the AHT coefficients to correctly classify the input signals. Because any real use of the …


Structural Data Acquisition Using Sensor Network, Sainath Chidambar Munavalli Apr 2013

Structural Data Acquisition Using Sensor Network, Sainath Chidambar Munavalli

FIU Electronic Theses and Dissertations

The development cost of any civil infrastructure is very high; during its life span, the civil structure undergoes a lot of physical loads and environmental effects which damage the structure. Failing to identify this damage at an early stage may result in severe property loss and may become a potential threat to people and the environment. Thus, there is a need to develop effective damage detection techniques to ensure the safety and integrity of the structure. One of the Structural Health Monitoring methods to evaluate a structure is by using statistical analysis. In this study, a civil structure measuring 8 …


Hand-Held Flyback Driven Coaxial Dielectric Barrier Discharge: Development And Characterization, Victor J. Law, Vladimir Milosavljevic, Neil O’Connor, James F. Lalor, Steven Daniels Sep 2008

Hand-Held Flyback Driven Coaxial Dielectric Barrier Discharge: Development And Characterization, Victor J. Law, Vladimir Milosavljevic, Neil O’Connor, James F. Lalor, Steven Daniels

Articles

The development of a handheld single and triple chamber atmospheric pressure coaxial dielectric barrier discharge driven by Flyback circuitry for helium and argon discharges is described. The Flyback uses external metal-oxide-semiconductor field-effect transistor power switching technology and the transformer operates in the continuous current mode to convert a continuous dc power of 10–33 W to generate a 1.2–1.6 kV 3.5 μs pulse. An argon discharge breakdown voltage of ∼768 V is measured. With a 50 kHz, pulse repetition rate and an argon flow rate of 0.5–10 argon slm (slm denotes standard liters per minute), the electrical power density deposited in …


Asynchronous Ds-Ss Cdma Random Spreading Code Correlation Statistics In The Presence Of Timing Error, David W. Matolak Nov 2005

Asynchronous Ds-Ss Cdma Random Spreading Code Correlation Statistics In The Presence Of Timing Error, David W. Matolak

Faculty Publications

We quantify the effect of timing tracking errors upon 2nd order correlation statistics of random binary spreading codes and, in so doing, fill a gap in the literature. Using a Gaussian model for timing tracking error, new expressions for autocorrelation statistics are derived. For crosscorrelations, we show that a zero mean Gaussian timing error has no effect upon 2nd order crosscorrelation statistics.


Surface-To-Surface Transition Via Electromagnetic Coupling Of Coplanar Waveguides, Robert W. Jackson, David W. Matolak Nov 1987

Surface-To-Surface Transition Via Electromagnetic Coupling Of Coplanar Waveguides, Robert W. Jackson, David W. Matolak

Faculty Publications

A transition is investigated which couples coplanar waveguide on one substrate surface (a motherboard) to coplanar waveguide on another substrate surface (a semiconductor chip or subarray) placed above the first. No wire bonds are necessary. A full-wave analysis using coupled line theory is presented and verified experimentally. The use of this transition for coupling to millimeter-wave integrated circuits is discussed.