Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in VLSI and Circuits, Embedded and Hardware Systems

S.A.V.E. M.E., Taylor Davis, Kelly Nicole O'Neill, Adrianna M. Dunlap, Parsa Esshaghi Bayat Jan 2019

S.A.V.E. M.E., Taylor Davis, Kelly Nicole O'Neill, Adrianna M. Dunlap, Parsa Esshaghi Bayat

Williams Honors College, Honors Research Projects

S.A.V.E. M.E. stands for Submerged Automated Vehicular Elevation Minor Extraction or alternatively a Home Swimming Pool Rescue Device. The objective of this project is to design and prototype a system that will make unattended swimming pools through detecting a victim’s presence, deploying a means to save the victim, and alerting others nearby of the situation. This system encompasses sensors and devices within the pool and an alarm system outside of the pool. Upon detection of a sufficiently sized object entering the pool when the system is armed, a device will maneuver to the victim and deploy a flotation device that …


Si-Based Germanium-Tin (Gesn) Emitters For Short-Wave Infrared Optoelectronics, Seyed Amir Ghetmiri Dec 2016

Si-Based Germanium-Tin (Gesn) Emitters For Short-Wave Infrared Optoelectronics, Seyed Amir Ghetmiri

Graduate Theses and Dissertations

Conventional integrated electronics have reached a physical limit, and their efficiency has been influenced by the generated heat in the high-density electronic packages. Integrated photonic circuits based on the highly developed Si complementary-metal-oxide-semiconductor (CMOS) infrastructure was proposed as a viable solution; however, Si-based emitters are the most challenging component for the monolithic integrated photonic circuits. The indirect bandgap of silicon and germanium is a bottleneck for the further development of photonic and optoelectronic integrated circuits.

The Ge1-xSnx alloy, a group IV material system compatible with Si CMOS technology, was suggested as a desirable material that theoretically exhibits a direct bandgap …