Open Access. Powered by Scholars. Published by Universities.®

Electronic Devices and Semiconductor Manufacturing

Applied sciences

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in VLSI and Circuits, Embedded and Hardware Systems

Si-Based Germanium-Tin (Gesn) Emitters For Short-Wave Infrared Optoelectronics, Seyed Amir Ghetmiri Dec 2016

Si-Based Germanium-Tin (Gesn) Emitters For Short-Wave Infrared Optoelectronics, Seyed Amir Ghetmiri

Graduate Theses and Dissertations

Conventional integrated electronics have reached a physical limit, and their efficiency has been influenced by the generated heat in the high-density electronic packages. Integrated photonic circuits based on the highly developed Si complementary-metal-oxide-semiconductor (CMOS) infrastructure was proposed as a viable solution; however, Si-based emitters are the most challenging component for the monolithic integrated photonic circuits. The indirect bandgap of silicon and germanium is a bottleneck for the further development of photonic and optoelectronic integrated circuits.

The Ge1-xSnx alloy, a group IV material system compatible with Si CMOS technology, was suggested as a desirable material that theoretically exhibits a direct bandgap …


Compact Modeling Of Sic Insulated Gate Bipolar Transistors, Sonia Perez Aug 2016

Compact Modeling Of Sic Insulated Gate Bipolar Transistors, Sonia Perez

Graduate Theses and Dissertations

This thesis presents a unified (n-channel and p-channel) silicon/silicon carbide Insulated Gate Bipolar Transistor (IGBT) compact model in both MAST and Verilog-A formats. Initially, the existing MAST model mobility equations were updated using recently referenced silicon carbide (SiC) data. The updated MAST model was then verified for each device tested. Specifically, the updated MAST model was verified for the following IGBT devices and operation temperatures: n-channel silicon at 25 ˚C and at 125 ˚C; n-channel SiC at 25 ˚C and at 175 ˚C; and p-channel SiC at 150 ˚C and at 250 ˚C. Verification was performed through capacitance, DC output …


The Development And Packaging Of A High-Density, Three-Phase, Silicon Carbide (Sic) Motor Drive, Jared Hornberger Dec 2012

The Development And Packaging Of A High-Density, Three-Phase, Silicon Carbide (Sic) Motor Drive, Jared Hornberger

Graduate Theses and Dissertations

Technology advances within the power electronics field are resulting in systems characterized by higher operating efficiencies, reduced footprint, minimal form factor, and decreasing mass. In particular, these attributes and characteristics are being inserted into numerous consumer applications, such as light-emitting diode lighting, compact fluorescent lighting, smart phones, and tablet PCs, to industrial applications that include hybrid, electric, and plug-in electric vehicles and more electric aircraft. To achieve the increase in energy efficiency and significant reduction in size and mass of these systems, power semiconductor device manufacturers are developing silicon carbide (SiC) semiconductor technology.

In this dissertation, the author discusses the …


Delay Insensitive Ternary Logic Utilizing Cmos And Cntfet, Ravi Sankar Parameswaran Nair Aug 2012

Delay Insensitive Ternary Logic Utilizing Cmos And Cntfet, Ravi Sankar Parameswaran Nair

Graduate Theses and Dissertations

As digital circuit design continues to evolve due to progress of semiconductor processes well into the sub 100nm range, clocked architectures face limitations in a number of cases where clockless asynchronous architectures require substantially less power, generate less noise, and produce less electromagnetic interference (EMI). This dissertation develops the Delay Insensitive Ternary Logic (DITL) asynchronous design paradigm that combines the designs aspects of similar Dual-Rail asynchronous paradigms and Boolean logic to create a single wire per bit, three voltage signaling and logic scheme.

DITL is designed at the transistor level using multi-threshold CMOS and carbon nanotube (CNT) FETs to develop …