Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in VLSI and Circuits, Embedded and Hardware Systems

A Bulk Driven Transimpedance Cmos Amplifier For Sipm Based Detection, Shahram Hatefi Hesari Aug 2022

A Bulk Driven Transimpedance Cmos Amplifier For Sipm Based Detection, Shahram Hatefi Hesari

Masters Theses

The contribution of this work lies in the development of a bulk driven operational
transconducctance amplifier which can be integrated with other analog circuits and
photodetectors in the same chip for compactness, miniaturization and reducing the
power. Silicon photomultipliers, also known as SiPMs, when coupled with scintillator materials are used in many imaging applications including nuclear detection. This thesis discuss the design of a bulk-driven transimpedance amplifier suitable for detectors where the front end is a SiPM. The amplifier was design and fabricated in a standard standard CMOS process and is suitable for integration with CMOS based SiPMs and commercially …


Design Of A Bandgap Voltage Reference, Nicolaus Vail May 2022

Design Of A Bandgap Voltage Reference, Nicolaus Vail

Electrical Engineering Undergraduate Honors Theses

This thesis details the design process of a bandgap voltage reference (BGR) integrated circuit in a 180 nm CMOS process. A BGR provides a constant DC voltage across a range of operating temperatures and supply voltages. By its nature, the circuit is intended as a reference, not to provide current, so the output would be connected to a very high impedance, such as the gate of a transistor. At 27°C, this design provides a 955 mV reference voltage given a nominal VDD of 3 V. From 20°C to 175°C, the output voltage has a variance of 7.2 mV (approximately 0.8%) …


Bi-Directional Vector Variable Gain Amplifier For An X-Band Phased Array Radar Application, Arash Mashayekhi Jan 2014

Bi-Directional Vector Variable Gain Amplifier For An X-Band Phased Array Radar Application, Arash Mashayekhi

Masters Theses 1911 - February 2014

This thesis presents the design, layout, and measurements of a bi-directional amplifier with variable vector (in-phase / quadrature) gain control that will be part of an electronically steered phased array system. The electronically steered phased array has many advantages over the conventional mechanically steered antennas including rapid scanning of the beam and adaptively creating nulls in desired locations. The 10-bit bi-directional Vector Variable Gain Amplifier (VVGA) is part of the transmit and receive module of each antenna element where transmit and receive functionality is determined through a simple switch. The VVGA performs amplification of the IF IQ pair by an …