Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in VLSI and Circuits, Embedded and Hardware Systems

Bi-Directional Vector Variable Gain Amplifier For An X-Band Phased Array Radar Application, Arash Mashayekhi Jan 2014

Bi-Directional Vector Variable Gain Amplifier For An X-Band Phased Array Radar Application, Arash Mashayekhi

Masters Theses 1911 - February 2014

This thesis presents the design, layout, and measurements of a bi-directional amplifier with variable vector (in-phase / quadrature) gain control that will be part of an electronically steered phased array system. The electronically steered phased array has many advantages over the conventional mechanically steered antennas including rapid scanning of the beam and adaptively creating nulls in desired locations. The 10-bit bi-directional Vector Variable Gain Amplifier (VVGA) is part of the transmit and receive module of each antenna element where transmit and receive functionality is determined through a simple switch. The VVGA performs amplification of the IF IQ pair by an …


A Novel Reconfiguration Scheme In Quantum-Dot Cellular Automata For Energy Efficient Nanocomputing, Madhusudan Chilakam Jan 2013

A Novel Reconfiguration Scheme In Quantum-Dot Cellular Automata For Energy Efficient Nanocomputing, Madhusudan Chilakam

Masters Theses 1911 - February 2014

Quantum-Dot Cellular Automata (QCA) is currently being investigated as an alternative to CMOS technology. There has been extensive study on a wide range of circuits from simple logical circuits such as adders to complex circuits such as 4-bit processors. At the same time, little if any work has been done in considering the possibility of reconfiguration to reduce power in QCA devices. This work presents one of the first such efforts when considering reconfigurable QCA architectures which are expected to be both robust and power efficient. We present a new reconfiguration scheme which is highly robust and is expected to …


Critical Area Driven Dummy Fill Insertion To Improve Manufacturing Yield, Nishant Dhumane Jan 2012

Critical Area Driven Dummy Fill Insertion To Improve Manufacturing Yield, Nishant Dhumane

Masters Theses 1911 - February 2014

Non-planar surface may cause incorrect transfer of patterns during lithography. In today’s IC manufacturing, chemical mechanical polishing (CMP) is used for topographical planarization. Since polish rates for metals and oxides are different, dummy metal fills in layout is used to minimize post-CMP thickness variability. Traditional metal fill solutions focus on satisfying density target determined by layout density analysis techniques. These solutions may potentially reduce yield by increasing probability of failure (POF) due to particulate defects and also impact design performance. Layout design solutions that minimize POF and also improve surface planarity via dummy fill insertions have competing requirements for line …


On Process Variation Tolerant Low Cost Thermal Sensor Design, Spandana Remarsu Jan 2011

On Process Variation Tolerant Low Cost Thermal Sensor Design, Spandana Remarsu

Masters Theses 1911 - February 2014

Thermal management has emerged as an important design issue in a range of designs from portable devices to server systems. Internal thermal sensors are an integral part of such a management system. Process variations in CMOS circuits cause accuracy problems for thermal sensors which can be fixed by calibration tables. Stand-alone thermal sensors are calibrated to fix such problems. However, calibration requires going through temperature steps in a tester, increasing test application time and cost. Consequently, calibrating thermal sensors in typical digital designs including mainstream desktop and notebook processors increases the cost of the processor. This creates a need for …