Open Access. Powered by Scholars. Published by Universities.®

Electronic Devices and Semiconductor Manufacturing

University of Arkansas, Fayetteville

Integrated Circuit Design

Articles 1 - 1 of 1

Full-Text Articles in VLSI and Circuits, Embedded and Hardware Systems

Design And Test Of A Gate Driver With Variable Drive And Self-Test Capability Implemented In A Silicon Carbide Cmos Process, Matthew Barlow May 2017

Design And Test Of A Gate Driver With Variable Drive And Self-Test Capability Implemented In A Silicon Carbide Cmos Process, Matthew Barlow

Graduate Theses and Dissertations

Discrete silicon carbide (SiC) power devices have long demonstrated abilities that outpace those of standard silicon (Si) parts. The improved physical characteristics allow for faster switching, lower on-resistance, and temperature performance. The capabilities unleashed by these devices allow for higher efficiency switch-mode converters as well as the advance of power electronics into new high-temperature regimes previously unimaginable with silicon devices. While SiC power devices have reached a relative level of maturity, recent work has pushed the temperature boundaries of control electronics further with silicon carbide integrated circuits.

The primary requirement to ensure rapid switching of power MOSFETs was a gate …