Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in VLSI and Circuits, Embedded and Hardware Systems

Asynchronous Circuit Synthesis Using Multi-Threshold Null Convention Logic, Nicholas Renoudet Mize May 2019

Asynchronous Circuit Synthesis Using Multi-Threshold Null Convention Logic, Nicholas Renoudet Mize

Graduate Theses and Dissertations

As the demand for an energy-efficient alternative to traditional synchronous circuit design grows, hardware designers must reconsider the traditional clock tree. By doing away with the constrains of a clock, asynchronous sequential circuit designs can achieve a much greater level of efficiency. The utilization of asynchronous logic synthesis flows has enabled researchers to better implement asynchronous circuit designs which have been optimized using the same industry standard tools that are already used in sequential synchronous designs. This thesis offers a new flow for such tools which implements the MTNCL asynchronous circuit architecture.


Efficacy Of Multi-Threshold Null Convention Logic In Low-Power Applications, Brent Bell Aug 2018

Efficacy Of Multi-Threshold Null Convention Logic In Low-Power Applications, Brent Bell

Graduate Theses and Dissertations

In order for an asynchronous design paradigm such as Multi-Threshold NULL Convention Logic (MTNCL) to be adopted by industry, it is important for circuit designers to be aware of its advantages and drawbacks especially with respect to power usage. The power tradeoff between MTNCL and synchronous designs depends on many different factors including design type, circuit size, process node, and pipeline granularity. Each of these design dimensions influences the active power and the leakage power comparisons. This dissertation analyzes the effects of different design dimensions on power consumption and the associated rational for these effects. Results show that while MTNCL …


Technology Mapping, Design For Testability, And Circuit Optimizations For Null Convention Logic Based Architectures, Farhad Alibeygi Parsan Dec 2014

Technology Mapping, Design For Testability, And Circuit Optimizations For Null Convention Logic Based Architectures, Farhad Alibeygi Parsan

Graduate Theses and Dissertations

Delay-insensitive asynchronous circuits have been the target of a renewed research effort because of the advantages they offer over traditional synchronous circuits. Minimal timing analysis, inherent robustness against power-supply, temperature, and process variations, reduced energy consumption, less noise and EMI emission, and easy design reuse are some of the benefits of these circuits. NULL Convention Logic (NCL) is one of the mainstream asynchronous logic design paradigms that has been shown to be a promising method for designing delay-insensitive asynchronous circuits.

This dissertation investigates new areas in NCL design and test and is made of three sections. The first section discusses …


Asynchronous Mips Processors: Educational Simulations, Robert L. Webb Aug 2010

Asynchronous Mips Processors: Educational Simulations, Robert L. Webb

Master's Theses

The system clock has been omnipresent in most mainstream chip designs. While simplifying many design problems the clock has caused the problems of clock skew, high power consumption, electromagnetic interference, and worst-case performance. In recent years, as the timing constraints of synchronous designs have been squeezed ever tighter, the efficiencies of asynchronous designs have become more attractive. By removing the clock, these issues can be mitigated. How- ever, asynchronous designs are generally more complex and difficult to debug. In this paper I discuss the advantages of asynchronous processors and the specifics of some asynchronous designs, outline the roadblocks to asynchronous …