Open Access. Powered by Scholars. Published by Universities.®

Systems and Communications Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Systems and Communications

A Modular Framework For Surface-Embedded Actuation And Optical Sensing In Soft Robots., Paul Bupe Jr Dec 2023

A Modular Framework For Surface-Embedded Actuation And Optical Sensing In Soft Robots., Paul Bupe Jr

Electronic Theses and Dissertations

This dissertation explores the development and integration of modular technologies in soft robotics, with a focus on the OptiGap sensor system. OptiGap serves as a simple, flexible, cost-effective solution for real-time sensing of bending and deformation, validated through simulation and experimentation. Working as part of an emerging category of soft robotics called Soft, Curved, Reconfigurable, Anisotropic Mechanisms, or SCRAMs, this research also introduces the Thermally-Activated SCRAM Limb (TASL) technology, which employs shape-memory alloy (SMA) wire embedded in curved sheets for surface actuation and served as the initial inspiration for OptiGap. In addition, the EneGate system is presented as a complementary …


A Path Planning Framework For Multi-Agent Robotic Systems Based On Multivariate Skew-Normal Distributions, Peter Estephan Jan 2023

A Path Planning Framework For Multi-Agent Robotic Systems Based On Multivariate Skew-Normal Distributions, Peter Estephan

Theses, Dissertations and Capstones

This thesis presents a path planning framework for a very-large-scale robotic (VLSR) system in an known obstacle environment, where the time-varying distributions of agents are applied to represent the multi-agent robotic system (MARS). A novel family of the multivariate skew-normal (MVSN) distributions is proposed based on the Bernoulli random field (BRF) referred to as the Bernoulli-random-field based skew-normal (BRF-SN) distribution. The proposed distributions are applied to model the agents’ distributions in an obstacle-deployed environment, where the obstacle effect is represented by a skew function and separated from the no-obstacle agents’ distributions. First, the obstacle layout is represented by a Hilbert …


Parallel Real Time Rrt*: An Rrt* Based Path Planning Process, David Yackzan Jan 2023

Parallel Real Time Rrt*: An Rrt* Based Path Planning Process, David Yackzan

Theses and Dissertations--Mechanical Engineering

This thesis presents a new parallelized real-time path planning process. This process is an extension of the Real-Time Rapidly Exploring Random Trees* (RT-RRT*) algorithm developed by Naderi et al in 2015 [1]. The RT-RRT* algorithm was demonstrated on a simulated two-dimensional dynamic environment while finding paths to a varying target state. We demonstrate that the original algorithm is incapable of running at a sufficient rate for control of a 7-degree-of-freedom (7-DoF) robotic arm while maintaining a path planning tree in 7 dimensions. This limitation is due to the complexity of maintaining a tree in a high-dimensional space and the network …