Open Access. Powered by Scholars. Published by Universities.®

Systems and Communications Commons

Open Access. Powered by Scholars. Published by Universities.®

Controls and Control Theory

2017

Institution
Keyword
Publication
Publication Type

Articles 1 - 14 of 14

Full-Text Articles in Systems and Communications

Application Of Real Field Connected Vehicle Data For Aggressive Driving Identification On Horizontal Curves, Arash Jahangiri, Vincent Berardi, Sahar Ghanipoor Machiani Dec 2017

Application Of Real Field Connected Vehicle Data For Aggressive Driving Identification On Horizontal Curves, Arash Jahangiri, Vincent Berardi, Sahar Ghanipoor Machiani

Psychology Faculty Articles and Research

The emerging technology of connected vehicles generates a vast amount of data that could be used to enhance roadway safety. In this paper, we focused on safety applications of a real field connected vehicle data on a horizontal curve. The database contains connected vehicle data that were collected on public roads in Ann Arbor, Michigan with instrumented vehicles. Horizontal curve negotiations are associated with a great number of accidents, which are mainly attributed to driving errors. Aggressive/risky driving is a contributing factor to the high rate of crashes on horizontal curves. Using basic safety message data in connected vehicle data …


Energy Management Algorithm For Resilient Controlled Delivery Grids, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed, Haim Grebel, Roberto Rojas-Cessa Oct 2017

Energy Management Algorithm For Resilient Controlled Delivery Grids, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed, Haim Grebel, Roberto Rojas-Cessa

Publications and Research

Resilience of the power grid is most challenged at power blackouts since the issues that led to it may not be fully resolved by the time the power is back. In this paper, a Real-Time Energy Management Algorithm (RTEMA) has been developed to increase the resilience of power systems based on the controlled delivery grid (CDG) concept. In a CDG, loads communicate with a central controller, periodically sending requests for power. The central controller runs an algorithm, based on which it may decide whether to grant the requested energy fully or partially. Therefore, the CDG limits loads discretionary access to …


Quantitative Analysis Of Regenerative Energy In Electric Rail Traction Systems, Mahmoud Saleh, Oindrilla Dutta, Yusef Esa, Ahmed Mohamed Oct 2017

Quantitative Analysis Of Regenerative Energy In Electric Rail Traction Systems, Mahmoud Saleh, Oindrilla Dutta, Yusef Esa, Ahmed Mohamed

Publications and Research

This paper aims at determining the influential factors affecting regenerative braking energy in DC rail transit systems. This has been achieved by quantitatively evaluating the dependence of regenerative energy on various parameters, such as vehicle dynamics, train scheduling, ground inclination and efficiency of the electrical devices. The recuperated power and energy have been presented by a mathematical model, comprising of a set of empirical forms, which allows for thorough analysis. A detailed simulation model of a typical DC-traction system has been developed to validate the developed empirical forms. The results verified the validity of the proposed mathematical model, and demonstrated …


Optimal Microgrids Placement In Electric Distribution Systems Using Complex Network Framework, Mahmoud Saleh, Yusef Esa, Nwabueze Onuorah, Ahmed Mohamed Oct 2017

Optimal Microgrids Placement In Electric Distribution Systems Using Complex Network Framework, Mahmoud Saleh, Yusef Esa, Nwabueze Onuorah, Ahmed Mohamed

Publications and Research

This paper provides a new approach to find the optimal location for Microgrids (MGs) in electric distribution systems using complex network analysis. An optimal location in this paper refers to a location that would result in increased grid resilience, reduced power losses, less line loading, higher voltage stability and secured supply to critical loads during power outage. The criteria used to find the optimal placement of MGs were based on the centrality analysis adopted from complex network theory, the center of mass concept used in physics, and the controlled delivery grid (CDG) concept. An IEEE 30-bus system was used as …


Two Senior Projects: 2.4 Ghz, 40% Efficiency Radio Frequency Amplifier, Ieee Design Contest, & Design And Implementation Of A Software Costas Loop For Audio Frequencies, Robert J. Tong Aug 2017

Two Senior Projects: 2.4 Ghz, 40% Efficiency Radio Frequency Amplifier, Ieee Design Contest, & Design And Implementation Of A Software Costas Loop For Audio Frequencies, Robert J. Tong

Electrical Engineering

How to Read this Document:

This document combines two senior project reports. The first senior project documents designing a class AB RF amplifier. The second, discusses the design and implementation of a software Costas loop for audio frequencies. The first report begins on the next page, while the Costas loop report starts on page 24. The two reports are orthogonal from one another. It is not a prerequisite to read the RF amplifier report before reading the Costas loop report. This document is merely two reports combined into one document. The second report, about the Costas loop, was written as …


Autonomous Speed Control For Kia Optima, Andrew J. Combs, Kyle Fugatt, Kevin Mcfall Jun 2017

Autonomous Speed Control For Kia Optima, Andrew J. Combs, Kyle Fugatt, Kevin Mcfall

The Kennesaw Journal of Undergraduate Research

The standard method for speed control is the cruise control system built into most modern vehicles. These systems employ a PID controller which actuates the accelerator thus, in turn, maintains the desired vehicle speed. The main drawback of such a system is that typically the cruise control will only engage above 25 mph. The goal of this paper is to describe a system which we used to control vehicle speed from a stop to any desired speed using an Arduino microcontroller and a CAN BUS shield, from where autonomous features can be built upon. With this system, we were able …


An Exact Analysis For Four-Order Acousto-Optic Bragg Diffraction Which Incorporates Both Incident Light Angle And Sound Frequency Dependencies, Adeyinka Sunday Ademola May 2017

An Exact Analysis For Four-Order Acousto-Optic Bragg Diffraction Which Incorporates Both Incident Light Angle And Sound Frequency Dependencies, Adeyinka Sunday Ademola

Electrical Engineering Theses

This thesis extends the prior work which produced an exact solution to the four-order acousto-optic (AO) Bragg cell with assumed fixed center frequency and with exact Bragg angle incident light. The extension predicts the model that incorporates the dependencies of both the input angle of light and the sound frequency. Specifically, a generalized 4th order linear differential equation (DE), is developed from a simultaneous analysis of four coupled AO system of DEs. Through standard methods, the characteristic roots, which requires solving a quartic equation, is produced. Subsequently, a derived system of homogeneous solutions, which absorbs the roots obtained using …


A Practical Realization Of A Return Map Immune Lorenz Based Chaotic Stream Cipher In Circuitry, Daniel Robert Brown May 2017

A Practical Realization Of A Return Map Immune Lorenz Based Chaotic Stream Cipher In Circuitry, Daniel Robert Brown

Masters Theses

Some chaotic systems are advantageously capable of self-synchronizing with a like system through a single shared state. Using a plain text binary message, a single system parameter can be modulated to mask this message and transmit it securely through the single shared state. The most simple implementations of this encryption technique are, however, vulnerable to the return map attack. Using a time-scaling factor to further obfuscate the modulation process, a return map attack immunity is gained. We report on the progress towards a realization of this process in real-time analog circuitry using off-the-shelf components.


Automation In Entertainment: Concept, Design, And Application, Ryan Thally May 2017

Automation In Entertainment: Concept, Design, And Application, Ryan Thally

Undergraduate Honors Theses

The focus of this thesis is to explore the automation technology used in the modern entertainment industry. Upon completion of my thesis, I will deliver a working prototype of the chosen technology and present its capabilities in a choreographed show.


Co-Design Of Security Aware Power System Distribution Architecture As Cyber Physical System, Tarek Youssef Apr 2017

Co-Design Of Security Aware Power System Distribution Architecture As Cyber Physical System, Tarek Youssef

FIU Electronic Theses and Dissertations

The modern smart grid would involve deep integration between measurement nodes, communication systems, artificial intelligence, power electronics and distributed resources. On one hand, this type of integration can dramatically improve the grid performance and efficiency, but on the other, it can also introduce new types of vulnerabilities to the grid. To obtain the best performance, while minimizing the risk of vulnerabilities, the physical power system must be designed as a security aware system.

In this dissertation, an interoperability and communication framework for microgrid control and Cyber Physical system enhancements is designed and implemented taking into account cyber and physical security …


Centralized Control For Dc Microgrid Using Finite State Machine, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed Apr 2017

Centralized Control For Dc Microgrid Using Finite State Machine, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed

Publications and Research

In this paper, an autonomous communication-based centralized control for DC microgrids (MG) has been developed and implemented. The proposed controller enables smooth transition between various operating modes. Finite state machine (FSM) has been used to mathematically describe the various operating modes (states), and events that may lead to mode changes (transitions). Therefore, the developed centralized controller aims at optimizing the performance of MG during all possible operational scenarios, while maintaining its reliability and stability. Results of selected cases have been presented. These results show stable transition between modes, verifying the validity and applicability of the proposed controller.


Contributions To Edge Computing, Vernon K. Bumgardner Jan 2017

Contributions To Edge Computing, Vernon K. Bumgardner

Theses and Dissertations--Computer Science

Efforts related to Internet of Things (IoT), Cyber-Physical Systems (CPS), Machine to Machine (M2M) technologies, Industrial Internet, and Smart Cities aim to improve society through the coordination of distributed devices and analysis of resulting data. By the year 2020 there will be an estimated 50 billion network connected devices globally and 43 trillion gigabytes of electronic data. Current practices of moving data directly from end-devices to remote and potentially distant cloud computing services will not be sufficient to manage future device and data growth.

Edge Computing is the migration of computational functionality to sources of data generation. The importance of …


Indoor Mapping Drone, Benjamin J. Plevny, Andrew Armstrong, Miguel Lopez, Davidson Okpara Jan 2017

Indoor Mapping Drone, Benjamin J. Plevny, Andrew Armstrong, Miguel Lopez, Davidson Okpara

Williams Honors College, Honors Research Projects

This project addresses the need for an autonomous indoor mapping system that will create a 3D map of an unknown physical environment in real time. The aerial system moves and avoids obstacles autonomously, without the need for human remote control or observation. An aerial system produces a map of an unknown indoor environment by transmitting data received from the aerial device’s sensors. The transmission occurs over a wireless channel from the aerial device to a remote server for processing and storage of the data. As the transmission is done in real time, the aerial system does not require hardware for …


Omni-Directional Infrared 3d Reconstruction And Tracking Of Human Targets, Emrah Benli Jan 2017

Omni-Directional Infrared 3d Reconstruction And Tracking Of Human Targets, Emrah Benli

Theses and Dissertations

Omni-directional (O-D) infrared (IR) vision is an effective capability for mobile systems in robotics, due to its advantages: illumination invariance, wide field-of-view, ease of identifying heat-emitting objects, and long term tracking without interruption. Unfortunately, O-D IR sensors have low resolution, low frame rates, high cost, sensor noise, and an increase in tracking time. In order to overcome these disadvantages, we propose an autonomous system application in indoor scenarios including 1) Dynamic 3D Reconstruction (D3DR) of the target view in real time images, 2) Human Behavior-based Target Tracking from O-D thermal images, 3) Thermal Multisensor Fusion (TMF), and 4) Visual Perception …