Open Access. Powered by Scholars. Published by Universities.®

Power and Energy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Power and Energy

Fourier Analysis And Optimization Of Inductive Wireless Power Transfer For Electric Vehicle Charging, Andrew P. Foote Dec 2023

Fourier Analysis And Optimization Of Inductive Wireless Power Transfer For Electric Vehicle Charging, Andrew P. Foote

Doctoral Dissertations

With the growth of electric vehicle (EV) popularity, different charging options to increase user convenience and reduce charging time such as high power wireless charging are increasingly being developed and researched. Inductive wireless power transfer (WPT) systems for EVs must meet specifications such as stray field, battery power and voltage operating range, efficiency, and ground clearance. The coil geometry and design have a large impact in meeting these constraints. Typical design approaches include iterative analysis of predetermined coil geometries to identify candidates that meet these constraints.

This work instead directly generates WPT coil shapes and magnetic fields to meet specifications …


Design Of Hybrid Inverters Using Wideband Gap Semiconductors For Microgrid Application, Luca Gacy Jun 2023

Design Of Hybrid Inverters Using Wideband Gap Semiconductors For Microgrid Application, Luca Gacy

Electronic Theses and Dissertations

As the world becomes more reliant on renewable energy sources such as solar and wind power, the need for high efficiency high power inverters connected to homes is more relevant than ever. Connecting these renewable energy sources (RES) coupled with an energy storage system (ESS) to the grid through a hybrid inverter, with the highest efficiency and grid stability, is quickly becoming a necessity for the near future. This thesis explores the integration of wide band gap semiconductors for the power stage in these systems, along with the analysis of hybrid inverter topologies and structures. The goal of this thesis …


Design And Implementation Of High-Efficiency, Lightweight, System-Friendly Solid-State Circuit Breaker, Dehao Qin May 2023

Design And Implementation Of High-Efficiency, Lightweight, System-Friendly Solid-State Circuit Breaker, Dehao Qin

All Dissertations

Direct current (DC) distribution system has shown potential over the alternative current (AC) distribution system in some application scenarios, e.g., electrified transportation, renewable energy, data center, etc. Because of the fast response speed, DC solid-state circuit breaker (SSCB) becomes a promising technology for the future power electronics intensive DC energy system with fault-tolerant capability. First, a thorough literature survey is performed to review the DC-SSCB technology. The key components for DC-SSCB, including power semiconductors, topologies, energy absorption units, and fault detection circuits, are studied. It is observed that the prior studies mainly focus on the basic interruption capability of the …