Open Access. Powered by Scholars. Published by Universities.®

Power and Energy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Power and Energy

Determining Power System Fault Location Using Neural Network Approach, Edward O. Ojini Jan 2022

Determining Power System Fault Location Using Neural Network Approach, Edward O. Ojini

Theses and Dissertations--Electrical and Computer Engineering

Fault location remains an extremely pivotal feature of the electric power grid as it ensures efficient operation of the grid and prevents large downtimes during fault occurrences. This will ultimately enhance and increase the reliability of the system. Since the invention of the electric grid, many approaches to fault location have been studied and documented. These approaches are still effective and are implemented in present times, and as the power grid becomes even more broadened with new forms of energy generation, transmission, and distribution technologies, continued study on these methods is necessary. This thesis will focus on adopting the artificial …


Parametric Average-Value Modeling, Simulation, And Characterization Of Machine-Rectifier Systems, Isuje Ojo Jan 2022

Parametric Average-Value Modeling, Simulation, And Characterization Of Machine-Rectifier Systems, Isuje Ojo

Theses and Dissertations--Electrical and Computer Engineering

There are many techniques for modeling and simulation of synchronous machine-rectifier systems. The more common approaches are the detailed and average-value modeling techniques. The detailed simulation technique takes into account the details of the diode switching and is both very accurate and very expensive in terms of computational resources. To alleviate this disadvantage, the average-value modeling technique is often utilized. In this approach, the details of diode switching are neglected or averaged. In that light, the work presented herein proposes a unique saliency-sensitive parametric average-value model (SSPAVM) of the synchronous machine-rectifier system. This model extends existing parametric average-value models to …


Models And Optimal Controls For Smart Homes And Their Integration Into The Electric Power Grid, Huangjie Gong Jan 2022

Models And Optimal Controls For Smart Homes And Their Integration Into The Electric Power Grid, Huangjie Gong

Theses and Dissertations--Electrical and Computer Engineering

Smart homes can operate as a distributed energy resource (DER), when equipped with controllable high-efficiency appliances, solar photovoltaic (PV) generators, electric vehicles (EV) and energy storage systems (ESS). The high penetration of such buildings changes the typical electric power load profile, which without appropriate controls, may become a “duck curve” when the surplus PV generation is high, or a “dragon curve” when the EV charging load is high. A smart home may contribute to an optimal solution of such problems through the energy storage capacity, provided by its by battery energy storage system (BESS), heating, ventilation, and air conditioning (HVAC) …


Hourly Dispatching Wind-Solar Hybrid Power System With Battery-Supercapacitor Hybrid Energy Storage, Pranoy Kumar Singha Roy Jan 2022

Hourly Dispatching Wind-Solar Hybrid Power System With Battery-Supercapacitor Hybrid Energy Storage, Pranoy Kumar Singha Roy

Theses and Dissertations--Electrical and Computer Engineering

This dissertation demonstrates a dispatching scheme of wind-solar hybrid power system (WSHPS) for a specific dispatching horizon for an entire day utilizing a hybrid energy storage system (HESS) configured by batteries and supercapacitors. Here, wind speed and solar irradiance are predicted one hour ahead of time using a multilayer perceptron Artificial Neural Network (ANN), which exhibits satisfactory performance with good convergence mapping between input and target output data. Furthermore, multiple state of charge (SOC) controllers as a function of energy storage system (ESS) SOC are developed to accurately estimate the grid reference power (PGrid,ref) for each dispatching period. …


Development Of Dc Circuit Breakers For Medium-Voltage Electrified Transportation, Trevor Morgan Arvin Jan 2022

Development Of Dc Circuit Breakers For Medium-Voltage Electrified Transportation, Trevor Morgan Arvin

Theses and Dissertations--Electrical and Computer Engineering

Medium-voltage DC (MVDC) distribution is an enabling technology for the electrification of transportation such as aircraft and shipboard. One main obstacle for DC distribution is the lack of adequate circuit fault protection. The challenges are due to the rapidly rising fault currents and absence of zero crossings in DC systems compared to AC counterparts. Existing DC breaker solutions lack comprehensive consideration of energy efficiency, power density, fault interruption speed, reliability, and implementation cost.

In this thesis, two circuit topologies of improved DC circuit breakers are developed: the resonant current source based hybrid DC breaker (RCS-HDCB) and the high temperature superconductor …